Skip to main content

The Tensorization Trick in Convex Geometry

  • Chapter
  • First Online:
  • 832 Accesses

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 27))

Abstract

The “tensorization trick” consists in proving some geometric result for a set of vectors \(\left\{ v_i\right\} \) in some vector space V and then applying the same result to the tensor powers \(\left\{ v_i^{\otimes k}\right\} \) in \(V^{\otimes k}\), which in turn produces a considerably stronger version of the original result for vectors \(\left\{ v_i\right\} \). Our main examples concern packing vectors in the sphere, approximation of convex bodies by algebraic hypersurfaces and approximation of convex bodies by polytopes. We also discuss applications of a closely related polynomial method to constructing neighborly polytopes, bounding the Grothendieck constant, proving the polynomial ham sandwich theorem, bounding the number of equiangular lines in \({\mathbb R}^d\) and to constructing a counterexample to Borsuk’s conjecture.

This research was partially supported by NSF Grant DMS 1361541.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. N. Alon, Problems and results in extremal combinatorics. I, EuroComb’01 (Barcelona). Discret. Math. 273(1–3), 31–53 (2003)

    Article  Google Scholar 

  2. N. Alon, Perturbed identity matrices have high rank: proof and applications. Comb. Probab. Comput. 18(1–2), 3–15 (2009)

    Article  MathSciNet  Google Scholar 

  3. K. Ball, An elementary introduction to modern convex geometry, Flavors of Geometry, vol. 31, Mathematical Sciences Research Institute Publications (Cambridge University Press, Cambridge, 1997), pp. 1–58

    Google Scholar 

  4. I. Bárány, Z. Füredi, Approximation of the sphere by polytopes having few vertices. Proc. Am. Math. Soc. 102(3), 651–659 (1988)

    Article  MathSciNet  Google Scholar 

  5. A. Barvinok, A Course in Convexity, vol. 54, Graduate Studies in Mathematics (American Mathematical Society, Providence, 2002)

    MATH  Google Scholar 

  6. A. Barvinok, Estimating \(L^{\infty }\) norms by \(L^{2k}\) norms for functions on orbits. Found. Comput. Math. 2(4), 393–412 (2002)

    Article  MathSciNet  Google Scholar 

  7. A. Barvinok, Approximating a norm by a polynomial, Geometric Aspects of Functional Analysis, vol. 1807, Lecture Notes in Mathematics (Springer, Berlin, 2003), pp. 20–26

    Chapter  Google Scholar 

  8. A. Barvinok, Thrifty approximations of convex bodies by polytopes. Int. Math. Res. Not. IMRN 2014(16), 4341–4356 (2014)

    Article  MathSciNet  Google Scholar 

  9. A. Barvinok, G. Blekherman, Convex geometry of orbits, Combinatorial and Computational Geometry, vol. 52, Mathematical Sciences Research Institute Publications (Cambridge University Press, Cambridge, 2005), pp. 51–77

    Google Scholar 

  10. J. Batson, D.A. Spielman, N. Srivastava, Twice-Ramanujan sparsifiers. SIAM J. Comput. 41(6), 1704–1721 (2012)

    Article  MathSciNet  Google Scholar 

  11. G. Blekherman, There are significantly more nonnegative polynomials than sums of squares. Isr. J. Math. 153, 355–380 (2006)

    Article  MathSciNet  Google Scholar 

  12. K. Böröczky Jr., Approximation of general smooth convex bodies. Adv. Math. 153(2), 325–341 (2000)

    Article  MathSciNet  Google Scholar 

  13. P. Borwein, T. Erdélyi, Polynomials and Polynomial Inequalities, vol. 161, Graduate Texts in Mathematics (Springer, New York, 1995)

    MATH  Google Scholar 

  14. M. Braverman, K. Makarychev, Y. Makarychev, A. Naor, The Grothendieck constant is strictly smaller than Krivine’s bound. Forum of Mathematics Pi 1, e4–42 (2013)

    Article  MathSciNet  Google Scholar 

  15. E.M. Bronshtein, Approximation of convex sets by polyhedra. Sovremennaya Matematika. Fundamental’nye Napravleniya 22, 5–37 (2007); translated in J. Math. Sci. (New York) 153(6), 727–762 (2008)

    Google Scholar 

  16. C. Carathéodory, Über den Variabilitatsbereich det Fourierschen Konstanten von Positiven harmonischen Furktionen. Rendiconti del Circolo Matematico di Palermo 32, 193–217 (1911)

    Article  Google Scholar 

  17. P. Frankl, R. Wilson, Intersection theorems with geometric consequences. Combinatorica 1, 357–368 (1981)

    Article  MathSciNet  Google Scholar 

  18. D. Gale, Neighborly and cyclic polytopes, Proceedings of Symposia in Pure Mathematics, vol. VII (American Mathematical Society, Providence, 1963), pp. 225–232

    Google Scholar 

  19. E. Gluskin, A. Litvak, A remark on vertex index of the convex bodies, Geometric Aspects of Functional Analysis, vol. 2050, Lecture Notes in Mathematics (Springer, Heidelberg, 2012)

    Chapter  Google Scholar 

  20. A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques. Boletim da Sociedade Matemática São Paulo 8, 1–79 (1953)

    MATH  Google Scholar 

  21. P.M. Gruber, Application of an idea of Voronoi to John type problems. Adv. Math. 218(2), 309–351 (2008)

    Article  MathSciNet  Google Scholar 

  22. P.M. Gruber, Aspects of approximation of convex bodies, Handbook of Convex Geometry, vol. A, B (North-Holland, Amsterdam, 1993), pp. 319–345

    Chapter  Google Scholar 

  23. P.M. Gruber, Asymptotic estimates for best and stepwise approximation of convex bodies. I. Forum Math. 5(3), 281–297 (1993)

    MathSciNet  MATH  Google Scholar 

  24. L. Guth, N.H. Katz, On the Erdős distinct distances problem in the plane. Ann. Math. Second series 181(1), 155–190 (2015)

    Article  MathSciNet  Google Scholar 

  25. F. John, Extremum problems with inequalities as subsidiary conditions, Studies and Essays, vol. 1948 (Interscience Publishers Inc., New York, 1948), pp. 187–204. Presented to R. Courant on his 60th Birthday, January 8

    Google Scholar 

  26. G.A. Kabatyanskii, V.I. Levenshtein, Bounds for packings on the sphere and in space (Russian). Problemy Peredachi Informacii 14(1), 3–25 (1978)

    MathSciNet  MATH  Google Scholar 

  27. J. Kahn, G. Kalai, A counterexample to Borsuk’s conjecture. Bull. Am. Math. Soc. New Series 29(1), 60–62 (1993)

    Article  MathSciNet  Google Scholar 

  28. M. Kochol, Constructive approximation of a ball by polytopes. Mathematica Slovaca 44(1), 99–105 (1994)

    MathSciNet  MATH  Google Scholar 

  29. A.N. Kolmogorov, V.M. Tihomirov, \(\epsilon \)-entropy and \(\epsilon \)-capacity of sets in function spaces. Uspehi Matematicheskih Nauk 14(2(86)), 3–86 (1959). translated in Am. Math. Soc. Transl. 17(2), 277–364 (1961)

    Google Scholar 

  30. J.-L. Krivine, Constantes de Grothendieck et fonctions de type positif sur les sphères. Adv. Math. 31(1), 16–30 (1979)

    Article  MathSciNet  Google Scholar 

  31. A. Litvak, M. Rudelson, N. Tomczak-Jaegermann, On approximation by projections of polytopes with few facets. Isr. J. Math. 203(1), 141–160 (2014)

    Article  MathSciNet  Google Scholar 

  32. J. Matoušek, Thirty-Three Miniatures. Mathematical and Algorithmic Applications of Linear Algebra, vol. 53, Student Mathematical Library (American Mathematical Society, Providence, 2010)

    MATH  Google Scholar 

  33. P. Parrilo, A. Jadbabaie, Approximation of the joint spectral radius using sum of squares. Linear Algebra Appl. 428(10), 2385–2402 (2008)

    Article  MathSciNet  Google Scholar 

  34. G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, vol. 94, Cambridge Tracts in Mathematics (Cambridge University Press, Cambridge, 1989)

    Book  Google Scholar 

  35. A.H. Stone, J.W. Tukey, Generalized “sandwich” theorems. Duke Math. J. 9, 356–359 (1942)

    Article  MathSciNet  Google Scholar 

  36. T. Tao, A cheap version of the Kabatjanskii-Levenstein bound for almost orthogonal vectors (2013), blog post at https://terrytao.wordpress.com/2013/07/18/

Download references

Acknowledgements

I am grateful to Terence Tao for pointing to [1, 2, 36].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Barvinok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barvinok, A. (2018). The Tensorization Trick in Convex Geometry. In: Ambrus, G., Bárány, I., Böröczky, K., Fejes Tóth, G., Pach, J. (eds) New Trends in Intuitive Geometry. Bolyai Society Mathematical Studies, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57413-3_1

Download citation

Publish with us

Policies and ethics