Skip to main content

Distributed Query Processing Optimization in Wireless Sensor Network Using Artificial Immune System

  • Chapter
  • First Online:
Computational Intelligence in Sensor Networks

Part of the book series: Studies in Computational Intelligence ((SCI,volume 776))

Abstract

With the great advancement in wireless technology, number of wireless sensor network applications have increased in which different sensor nodes communicates with each other via sending data among themselves. Query for communication among sensor nodes can be framed in different forms leading into different computation cost. So, the generation and selection of query plan of minimum cost becomes combinatorial in nature which cannot be solved in polynomial time to achieve global optimal cost of data communication. One of the solution to address this problem is nature inspired algorithms. These algorithms have served to number of real life intricate problems. Amidst of all algorithms, bio-inspired algorithms have largely accepted to assist such problems. Artificial immune system (AIS), one of bio-inspired algorithm is inspired from natural human immune system has been explored here. Clonal selection process, one of AIS approach has been discussed in this chapter to generate optimal distributed query plans in distributed wireless sensor network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Romero, E., Warrington, R.O., Neuman, M.R.: Energy scavenging sources for biomedical sensors. Physiol. Measur. 30(9), R35 (2009)

    Article  Google Scholar 

  2. Zhang, P., et al: Hardware design experiences in ZebraNet. In: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, pp. 227–238. ACM (2004)

    Google Scholar 

  3. Salza, S., Barone, G., Morzy, T.: A distributed algorithm for global query optimization in multidatabase systems. In: East European Symposium on Advances in Databases and Information Systems, pp. 95–106. Springer (1998)

    Chapter  Google Scholar 

  4. Ho, L., et al.: A prototype on RFID and sensor networks for elder healthcare: progress report. In: Proceedings of the 2005 ACM SIGCOMM Workshop on Experimental Approaches to Wireless Network Design and Analysis, pp. 70–75. ACM (2005)

    Google Scholar 

  5. Van Laerhoven, K., et al.: Medical healthcare monitoring with wearable and implantable sensors. In: Proceedings of the 3rd International Workshop on Ubiquitous Computing for Healthcare Applications (2004)

    Google Scholar 

  6. Lee, R.G., et al.: Design and implementation of a mobile-care system over wireless sensor network for home healthcare applications. In: Engineering in Medicine and Biology Society, EMBS’06. 28th Annual International Conference of the IEEE, pp. 6004–6007. IEEE (2006)

    Google Scholar 

  7. Szewczyk, R., et al.: An analysis of a large scale habitat monitoring application. In: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, pp. 214–226. ACM (2004)

    Google Scholar 

  8. Malan, D., et al.: Codeblue: an ad hoc sensor network infrastructure for emergency medical care. In: International Workshop on Wearable and Implantable Body Sensor Networks, vol. 5. Boston, MA (2004)

    Google Scholar 

  9. Milenkovic, A., Otto, C., Jovanov, E.: Wireless sensor networks for personal health monitoring: issues and an implementation. Computer Commun. 29(13), 2521–2533 (2006)

    Article  Google Scholar 

  10. Ozsu, M.T., Valduriez, P.: Distributed database systems: where are we now? Computer 24(8), 68–78 (1991)

    Article  Google Scholar 

  11. Sheth, A.P., Larson, J.A.: Federated database systems for managing distributed, heterogeneous, and autonomous databases. ACM Comput. Surv. (CSUR) 22(3), 183–236 (1990)

    Article  Google Scholar 

  12. Akyildiz, I.F., et al.: Wireless sensor networks: a survey. Comput. Netw. 38(4), 393–422 (2002)

    Article  Google Scholar 

  13. Zhou, G., et al.: Impact of radio irregularity on wireless sensor networks. In: Proceedings of the 2nd International Conference on Mobile Systems, Applications, and Services, pp. 125–138. ACM (2004)

    Google Scholar 

  14. Hull, B., Jamieson, K., Balakrishnan, H.: Mitigating congestion in wireless sensor networks. In: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, pp. 134–137. ACM (2004)

    Google Scholar 

  15. Madden, S., et al.: TAG: a tiny aggregation service for ad-hoc sensor networks. ACM SIGOPS Oper. Syst. Rev. 36(SI), 131–146 (2002)

    Article  Google Scholar 

  16. Madden, S.R., et al.: TinyDB: an acquisitional query processing system for sensor networks. ACM Trans. Database Syst. (TODS) 30(1), 122–173 (2005)

    Article  Google Scholar 

  17. Zeinalipour-Yazti, D., et al.: Mint views: Materialized in-network top-k views in sensor networks. In: 2007 International Conference on Mobile Data Management, pp. 182–189. IEEE (2007)

    Google Scholar 

  18. Zeinalipour-Yazti, D., et al.: MicroHash: an efficient index structure for flash-based sensor devices. In: FAST, vol. 5 (2005)

    Google Scholar 

  19. Yao, Y., Gehrke, J., et al.: Query processing in sensor networks. In: Cidr, pp. 233–244 (2003)

    Google Scholar 

  20. Dietrich, I., Dressler, F.: On the lifetime of wireless sensor networks. In: ACM Trans. Sens. Netw. (TOSN) 5(1), 5 (2009)

    Article  Google Scholar 

  21. Hill, J., et al.: System architecture directions for networked sensors. ACM SIGOPS Oper. Syst. Rev. 34(5), 93–104 (2000)

    Article  Google Scholar 

  22. Chatzimilioudis, G., et al.: Operator placement for snapshot multipredicate queries in wireless sensor networks. In: Mobile Data Management: Systems, Services and Middleware. Tenth International Conference on 2009, MDM’09, pp. 21–30. IEEE (2009)

    Google Scholar 

  23. Chatzimilioudis, G., Mamoulis, N., Gunopulos, D.: A distributed technique for dynamic operator placement in wireless sensor networks. In: 2010 Eleventh International Conference on Mobile Data Management (MDM), pp. 167–176. IEEE (2010)

    Google Scholar 

  24. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Evaluation of probabilistic queries over imprecise data in constantly-evolving environments. Inf. Syst. 32(1), 104–130 (2007)

    Article  Google Scholar 

  25. Goel, S.: Imielinski, T: Prediction-based monitoring in sensor networks: taking lessons from MPEG. ACM SIGCOMM Comput. Commun. Rev. 31(5), 82–98 (2001)

    Article  Google Scholar 

  26. Ozsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Springer (2011)

    Google Scholar 

  27. Ceri, S., Pelagatti, G.: Distributed Databases Principles and Systems. McGraw-Hill, Inc. (1984)

    Google Scholar 

  28. Kossmann, D.: The state of the art in distributed query processing. ACM Comp. Surv. (CSUR) 32(4), 422–469 (2000)

    Article  Google Scholar 

  29. Alom, B.M.M., Henskens, F., Hannaford, M.: Query processing and optimization in distributed database systems. IJCSNS 9(9), 143 (2009)

    Google Scholar 

  30. Farmer, J.D., Packard, N.H., Perelson, A.S.: The immune system, adaptation, and machine learning. Phys. D: Nonlinear Phenom 22(1–3), 187–204 (1986)

    Article  MathSciNet  Google Scholar 

  31. Rani, R.: An efficient bio-inspired approach to generate distributed query plans. In: IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), pp. 1–5. IEEE (2016)

    Google Scholar 

  32. Rani, R.: Generate optimal distributed query plans using clonal selection process. In: International Conference on Distributed Computing and Internet Technology, pp. 301–305. Springer (2018)

    Google Scholar 

  33. Gibert, C.J., Routen, T.W.: Associative memory in an immune-based system. In: AAAI, pp. 852–857 (1994)

    Google Scholar 

  34. Hunt, J.E., Cooke, D.E.: Learning using an articial immune system. J. Netw. Comput. Appl. 19(2), 189–212 (1996)

    Article  Google Scholar 

  35. Forrest, S., et al.: Using genetic algorithms to explore pattern recognition in the immune system. Evol. Comput. 1(3), 191–211 (1993)

    Article  Google Scholar 

  36. Bersini, H., Varela, F.J.: Hints for adaptive problem solving gleaned from immune networks. In: International Conference on Parallel Problem Solving from Nature, pp. 343–354. Springer (1990)

    Google Scholar 

  37. Hunt, J.E., Cooke, D.E.: An adaptive, distributed learning system based on the immune system. In: IEEE International Conference on Systems, Man and Cybernetics, 1995. Intelligent Systems for the 21st Century, vol. 3, pp. 2494–2499. IEEE (1995)

    Google Scholar 

  38. de Castro, L.N., Timmis, J.: Artificial immune systems: a novel paradigm to pattern recognition. Artif. Neural Netw. Pattern Recogn. 1, 67–84 (2002)

    Google Scholar 

  39. Jarke, M., Koch, J.: Query optimization in database systems. ACM Comput. Surv. (CsUR) 16(2), 111–152 (1984)

    Article  MathSciNet  Google Scholar 

  40. Yuanyuan, F., Xifeng, M.: Distributed database system query optimization algorithm research. In: 2010 3rd IEEE International Conference on Computer Science and Information Technology (ICCSIT), vol. 8, pp. 657–660. IEEE (2010)

    Google Scholar 

  41. Yu, C.T., Chang, C.C.: Distributed query processing. ACM Comput. Surv. (CSUR) 16(4), 399–433 (1984)

    Article  Google Scholar 

  42. Zhu, Q., Larson, P.-A.: Global query processing and optimization in the CORDS multidatabase system. In: Proceedings of International Conference on Parallel and Distributed Computing Systems, pp. 640–646 (1996)

    Google Scholar 

  43. Chen, M.-S., Philip, S.: Combining joint and semi-join operations for distributed query processing. IEEE Trans. Knowl. Data Eng. 5(3), 534–542 (1993)

    Article  Google Scholar 

  44. Epstein, R., Stonebraker, M., Wong, E.: Distributed query processing in a relational data base system. In: Proceedings of the 1978 ACM SIGMOD International Conference on Management of Data, pp. 169–180. ACM (1978)

    Google Scholar 

  45. Bernstein, P.A., Chiu, D.-M.W.: Using semi-joins to solve relational queries. J. ACM (JACM) 28(1), 25–40 (1981)

    Article  Google Scholar 

  46. Chen, M.-S., Yu, P.S.: Interleaving a join sequence with semijoins in distributed query processing. IEEE Trans. Parallel Distrib. Syst. 3(5), 611–621 (1992)

    Article  Google Scholar 

  47. Swami, A., Gupta, A.: Optimization of Large Join Queries, vol. 17, No. 3. ACM (1988)

    Article  Google Scholar 

  48. Kumar, T.V.V., Singh, V., Verma, A.K.: Distributed query processing plans generationusing genetic algorithm. Int. J. Comput. Theory Eng. 3(1), 38 (2011)

    Article  Google Scholar 

  49. Perelson, A.S.: Immune network theory. Immunol. Rev 110(1), 5–36 (1989)

    Article  Google Scholar 

  50. Zhu, Y., et al.: Cooperation artificial immune system with application to traveling salesman problem. ICIC Express Lett. 2(2), 143–148 (2008)

    Google Scholar 

  51. De Castro, L.N., Von Zuben, F.J.: Artificial immune systems: part I-basic theory and applications. Universidade Estadual de Campinas, Dezembro de, Tech. Rep 210(1) (1999)

    Google Scholar 

  52. Forrest, S. et al.: Self-nonself discrimination in a computer. In: Research in Security and Privacy, 1994. Proceedings, IEEE Computer Society Symposium on IEEE, pp. 202–212 (1994)

    Google Scholar 

  53. Seiden, P.E., Celada, F.: A model for simulating cognate recognition and response in the immune system. J. Theor. Biol. 158(3), 329–357 (1992)

    Article  Google Scholar 

  54. De Castro, L.N., Von Zuben, F.J.: The clonal selection algorithm with engineering applications. Proceedings of GECCO, vol. 2000, pp. 36–39 (2000)

    Google Scholar 

  55. Floreano, D., Mattiussi, C.: Bio-inspired Artificial Intelligence: Theories, Methods, and Technologies. MIT Press (2008)

    Google Scholar 

  56. Millonas, M.M.: Swarms, phase transitions, and collective intelligence. Technical Report. Los Alamos National Lab, NM (United States) (1992)

    Google Scholar 

  57. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press (1992)

    Google Scholar 

  58. Husbands, P., et al.: Artificial evolution: a new path for artificial intelligence? Brain Cogn. 34(1), 130–159 (1997)

    Article  Google Scholar 

  59. Fister, I. Jr., et al.: A brief review of nature-inspired algorithms for optimization (2013). arXiv:1307.4186

  60. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems, vol. 1. Oxford University Press (1999)

    Google Scholar 

  61. Hoffmann, G.W.: A neural network model based on the analogy with the immune system. J. Theor. Biol. 122(1), 33–67 (1986)

    Article  MathSciNet  Google Scholar 

  62. Mishra, K.K., Tiwari, S., Misra, A.K.: A bio inspired algorithm for solving optimization problems. In: 2011 2nd International Conference on Computer and Communication Technology (ICCCT), pp. 653–659 IEEE (2011)

    Google Scholar 

  63. Swagatam, D., et al.: Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications. Found. Comput. Intell. 3, 23–55 (2009)

    Google Scholar 

Download references

Acknowledgements

This research work has been partially supported by the UPEII grant received from JNU. Additionally, the author would like to sincere thanks to the anonymous friends for their fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruby Rani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rani, R. (2019). Distributed Query Processing Optimization in Wireless Sensor Network Using Artificial Immune System. In: Mishra, B., Dehuri, S., Panigrahi, B., Nayak, A., Mishra, B., Das, H. (eds) Computational Intelligence in Sensor Networks. Studies in Computational Intelligence, vol 776. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57277-1_1

Download citation

Publish with us

Policies and ethics