Every finite division ring is a field

  • Martin Aigner
  • Günter M. Ziegler
Chapter

Abstract

Rings are important structures in modern algebra. If a ring R has a multiplicative unit element 1 and every nonzero element has a multiplicative inverse, then R is called a division ring. So, all that is missing in R from being a field is the commutativity of multiplication. The best-known example of a noncommutative division ring is the ring of quaternions discovered by Hamilton. But, as the chapter title says, every such division ring must of necessity be infinite. If R is finite, then the axioms force the multiplication to be commutative.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Martin Aigner
    • 1
  • Günter M. Ziegler
    • 1
  1. 1.Institut für MathematikFreie Universität BerlinBerlinGermany

Personalised recommendations