Skip to main content

Every finite division ring is a field

  • Chapter
  • First Online:
  • 126k Accesses

Abstract

Rings are important structures in modern algebra. If a ring R has a multiplicative unit element 1 and every nonzero element has a multiplicative inverse, then R is called a division ring. So, all that is missing in R from being a field is the commutativity of multiplication. The best-known example of a noncommutative division ring is the ring of quaternions discovered by Hamilton. But, as the chapter title says, every such division ring must of necessity be infinite. If R is finite, then the axioms force the multiplication to be commutative.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aigner, M., Ziegler, G.M. (2018). Every finite division ring is a field. In: Proofs from THE BOOK. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57265-8_6

Download citation

Publish with us

Policies and ethics