Path Guiding Support for a Semi-automatic System for Scarfing of CFRP Structures

  • Rebecca Rodeck
  • Thorsten Schüppstuhl
Conference paper


In this paper, different approaches for the path guidance of a support system for scarfing of CFRP structures are presented. First, the machine concept, mechanical setup, and the control system are introduced. The system addressed is a kind of support system where the human operator is responsible for planar movement while an axis perpendicular to this plane is controlled automatically depending on the planar position. In the following chapter, concepts and findings for path guiding, i.e. the manual guidance of the tool on a specified path, are presented. Three basic questions have to be addressed: an appropriate execution strategy has to be found that determines on what kind of path the operator should guide the system, the user guidance along a predefined path deals with the question of how to guide the user along this path, and in the last subsection the visualization and possible use of augmented reality are discussed.


Support System Human-Machine-Interface Scarfing of CFRP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ataş, A., Soutis C.: Subcritical damage mechanisms of bolted joints in CFRP composite laminates. Composites Part B: Engineering 54, 20-27 (2013).Google Scholar
  2. 2.
    Camanho, P. P., Matthews, F. L.: A Progressive Damage Model for Mechanically Fastened Joints in Composite Laminates. Journal of Composite Materials 33(24), 2248-2280 (1999).Google Scholar
  3. 3.
    Wang, C. H., Gunnion, A. J.: Optimum shapes of scarf repairs. Composites Part A: Applied Science and Manufacturing 40(9), 1407-1418 (2009).Google Scholar
  4. 4.
    Wachinger, G., Thum, C., Scheid, P.: Reparaturfähigkeit und Reparaturkonzepte bei Strukturen aus faserverstärkten Kunststoffen (FVK). In: Handbuch Leichtbau: Methoden, Werkstoffe, Fertigung, pp. 1161-1188. Carl Hanser Verlag, München (2011)Google Scholar
  5. 5.
    Holzhüter, D., Pototzky, A., Hühne, C., Sinapius, M.: Automated Scarfing Process for Bonded Composite Repairs. In: Adaptive, tolerant and efficient composite structures, pp. 297-307. Springer Berlin Heidelberg, Berlin Heidelberg (2013).Google Scholar
  6. 6.
    Erlbacher, E., Godwin, L.: Automated Scarfing and Surface Finishing Apparatus for Complex Contour Composite Structures. PushCorp Inc., Chicago (2000).Google Scholar
  7. 7.
    DMG MORI: ULTRASONIC mobileBLOCK // ULTRASONIC 85 / 260 / 360,, last accessed 2017/09/18
  8. 8.
    Höfener, M., Schueppstuhl, T.: Small industrial robots for on-aircraft repair of composite structures. In: Proceedings for the joint conference of 45th International Symposium on Robotics and 8th German Conference on Robotics. VDE Verlag GmbH, Berling (2014).Google Scholar
  9. 9.
    Höfener, M., Schüppstuhl, T.: A method for increasing the accuracy of “on-workpiece” machining with small industrial robots for composite repair. Production Engineering – Research and development 8(6), 701-709 (2014).Google Scholar
  10. 10.
    Höfener, M., Thum, C., Schüppstuhl, T.: Roboter zur mobilen spanenden Bearbeitung von CFK-Strukturen. VDI Z-Integrierte Produktion 10, 28-30 (2012).Google Scholar
  11. 11.
    Luz, M., Manzey, D., Mueller, S., Dietz, A., Meixensberger, J., Strauss, G.: Impact of navigated‐ control assistance on performance, workload and situation awareness of experienced surgeons performing a simulated mastoidectomy. The International Journal of Medical Robotics and Computer Assisted Surgery 10(2), 187-195 (2014).Google Scholar
  12. 12.
    Weidner, R., Rodeck, R., Wulfsberg, J., Schüppstuhl, T.: Unterstützung manueller Tätigkeiten: Am Beispiel des qualitätskritischen Prozesses des Schäftens von CFK-Strukturen. wt-online 9, 624-630 (2016).Google Scholar
  13. 13.
    Rodeck, R., Schüppstuhl, T.: Repair of Composite Structures with a Novel Human-Machine System. In: Proceedings of the 47th International Symposium on Robotics, pp.660-666 (2016).Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Aircraft Production TechnologyHamburg University of TechnologyHamburgDeutschland
  2. 2.Institut für Flugzeug-ProduktionstechnikTechnische Universität HamburgHamburgDeutschland

Personalised recommendations