Improving Path Accuracy in Varying Pick and Place Processes by means of Trajectory Optimization using Iterative Learning Control

  • Daniel Kaczor
  • Tobias Recker
  • Svenja Tappe
  • Tobias Ortmaier
Conference paper


This paper presents a universal method for improving the path accuracy in varying, highly dynamic pick and place processes. The proposed method is based on an iterative learning control (ILC) and is valid for serial as well as parallel robots. It extends the traditional ILC approach for purely repetitive tasks by evaluating similarities between the occurring movements. Based on this, the correction term for following trajectories can be calculated and a significant improvement in the accuracy can be obtained even for previously unknown (unlearned) motions. The performance of the method is studied and verified using an exemplary four degrees of freedom delta robot. It is shown that the presented approach improves the path accuracy up to 86% even if the occurring pick and place trajectories vary with respect to start and end position. It also outperforms conventional computed torque control methods by up to 50%.


Iterative Learning Control Path Accuracy Pick and Place Machine-Learning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhang, Y., Huang, R., Lou, Y., Li, Z.: Dynamics based Time-Optimal Smooth Motion Planning for the Delta Robot. 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)Google Scholar
  2. 2.
    Öltjen, J., Kotlarski, J., Ortmaier, T. On the Reduction of Vibration of Parallel Robots using Flatness-based Control and Adaptive Input Shaping, 2016 IEEE International Conference on Advanced Intelligent MechatronicsGoogle Scholar
  3. 3.
    Do Thanh, T., Kotlarski, J., Heimann, B., Ortmaier, T.: Dynamics identification of kinematically redundant parallel robots using the direct search method. Mechanism and Machine Theory, Volume 55, September 2012, Pages 104-121Google Scholar
  4. 4.
    Isermann, R., Münchhof, M., Identification of Dynamic Systems. Springer-Verlag Berlin Heidelberg, 2011Google Scholar
  5. 5.
    Moore, K. L.: Iterative Learning Control for Deterministic Systems. Springer, London 1993.Google Scholar
  6. 6.
    Bristow, D. A., Tharayil, M, Alleyne, A. G.: A survay of iterative learning control - A learning-based method for high-performance tracking control. Control Systems, IEEE, vol. 26, no. 3, pp. 96-114, 2006Google Scholar
  7. 7.
    Rogers, E., Galkowski, K., Owens, D. H.: Control Systems Theory an Applications for Linear Repetitive Processes. Springer, vol. 349, 2007.Google Scholar
  8. 8.
    Gunnarsson, S., Norrlöf, M.: On the disturbance properties of high order iterative learning control algorithms. Automativa, vol. 42, no. 11 pp. 2031−2034, 2006Google Scholar
  9. 9.
    Öltjen, J., Beckmann, D., Hansen, C., Maurer, I., Kotlarski, J., Ortmaier, T.:Integrated Parameter Management Concept for Simplified Implementation of Control, Motion Planning, and Process Optimization Methods. Applied Mechanics & Materials Vol. 840, p114-122, (2016) Trans Tech Publications, SchweizGoogle Scholar
  10. 10.
    Maurer, i., Riva, M., Hansen, C., Ortmaier, T.: Cloud-based Plant Process Monitoring on a Modular and Scalable Data Analytics Infrastructure. In: Schüppstuhl T., Franke J., Tracht K. (eds) Tagungsband des 2. Kongresses Montage Handhabung Industrieroboter. Springer Vieweg, Berlin, HeidelbergGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Daniel Kaczor
    • 1
  • Tobias Recker
    • 1
  • Svenja Tappe
    • 1
  • Tobias Ortmaier
    • 1
  1. 1.Institute of Mechatronic SystemsGottfried Wilhelm Leibniz Universität HannoverHannoverDeutschland

Personalised recommendations