Comparison of practically applicable mathematical descriptions of orientation and rotation in the three-dimensional Euclidean space

Conference paper

Zusammenfassung

In the handling technique, the orientation in the three-dimensional Euclidean space is considered or predefined for several assembly tasks. There are different mathematical methods to describe them. Euler presents 24 different conventions that describe any rotation in the space by a rotation about three orthogonal axis. These conventions are singularitydependent and their deployment is restricted to certain applications and domains. Quaternions overcome the disadvantages of the above mentioned conventions. They are numerically stable and efficient and describe the orientation by a rotation about one axis. This article deals with the comparison of practice-relevant mathematical descriptions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    VDI Rechtlinie 2861 Blatt 1: Montage- und Handhabungstechnik; Kenngrößen für Industrieroboter; Achsbezeichnungen.Düsseldorf, (1988).Google Scholar
  2. 2.
    Siciliano, B., Khatib, O. (Hrsg.): Handbook of Robotics. Berlin, Heidelberg: Springer(2008).Google Scholar
  3. 3.
    Brannon, R.M.: A review of useful theorems involving proper orthogonal matrices referenced to three dimensional physical space. http://www.mech.utah.edu/brannon/public/rotation.pdf(2002)
  4. 4.
    Funda, J., Russell H. T., Richard P.P.: On homogeneous transforms, quaternions, and computational efficiency. IEEE Transactions on Robotics and Automation, 6(3), pp. 382388 (1990).Google Scholar
  5. 5.
    Diebel, J.: Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors. Stanford University. Stanford, California 94301-9010 (2006).Google Scholar
  6. 6.
    Vidakovic, J. Z., Lazarevic, M. P., Kvrgic, V. M., Dancuo, Z. Z., Ferenc, G. Z.: Advanced Quaternion Forward Kinematics Algorithm Including Overview of Different Methods for Robot Kinematics. University of Belgrade. 198 VOL. 42, No 3 (2014).Google Scholar
  7. 7.
    Craig, J. J.: Introduction to Robotics Mechanics and Control 3rd edition. Pearson pp. 3947 (2005).Google Scholar
  8. 8.
    Corke, P.: Robotics, Vision and Control: Fundamental Algorithms in MATLAB. Springer Tracts in Advanced Robotics, Vol. 73, Springer Verlag Berlin Heidelberg (2011).Google Scholar
  9. 9.
    Kuipers, J. B.: Quaternions and Rotation Sequence. New Jersey (1999).Google Scholar
  10. 10.
    Tomasi, C.: Vector Representation of Rotations. https://www.cs.duke.edu/courses/fall13/compsci527/notes/rodrigues.pdf(2013)

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.ZeMA - Zentrum für Mechatronik und Automatisierungstechnik gemeinnützige GmbHSaarbrückenDeutschland

Personalised recommendations