Advertisement

Cluster Analysis

  • Marko Sarstedt
  • Erik Mooi
Chapter
Part of the Springer Texts in Business and Economics book series (STBE)

Abstract

We provide comprehensive and advanced knowledge of cluster analysis knowledge. We first introduce the principles of cluster analysis and outline the steps and decisions involved. We discuss how to select appropriate clustering variables and subsequently introduce modern hierarchical and partitioning methods for cluster analysis, using simple examples to illustrate how they work. We also discuss the key measures of similarity and dissimilarity, and offer guidance on how to decide the number of clusters to extract from the data. Each step in a cluster analysis is subsequently linked to its execution in SPSS, thus enabling readers to analyze, chart, and validate the results. Interpretation of SPSS output can be difficult, but we make this easier by means of an annotated case study. We conclude with suggestions for further readings on the use, application, and interpretation of cluster analysis.

Keywords

Cluster Variation Price Consciousness Linkage Algorithm Clustering Solution Agglomeration Schedule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Csáki (Eds.), Selected papers of Hirotugu Akaike (pp. 199–213). New York: Springer.Google Scholar
  2. Arabie, P., & Hubert, L. (1994). Cluster analysis in marketing research. In R. P. Bagozzi (Ed.), Advanced methods in marketing research (pp. 160–189). Cambridge: Basil Blackwell & Mott, Ltd.Google Scholar
  3. Arthur, D., & Vassilvitskii, S. (2007). k-means++: The advantages of careful seeding. Proceedings of the 18th annual ACM-SIAM symposium on discrete algorithms. Society for Industrial and Applied Mathematics Philadelphia, PA, USA, pp. 1027–1035.Google Scholar
  4. Bacher, J., Wenzig, K., & Vogler, M. (2004). SPSS TwoStep Cluster – A first evaluation. Arbeits- und Diskussionspapiere/Universität Erlangen-Nürnberg, Sozialwissenschaftliches Institut, Lehrstuhl für Soziologie, 2004-2. http://www.ssoar.info/ssoar/handle/document/32715.
  5. Becker, J.-M., Ringle, C. M., Sarstedt, M., & Völckner, F. (2015). How collinearity affects mixture regression results. Marketing Letters, 26(4), 643–659.CrossRefGoogle Scholar
  6. Caliński, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics—Theory and Methods, 3(1), 1–27.CrossRefGoogle Scholar
  7. Chiu, T., Fang, D., Chen, J., Wang, Y., & Jeris, C. (2001). A robust and scalable clustering algorithm for mixed type attributes in large database environment. Proceedings of the 7th ACM SIGKDD international conference in knowledge discovery and data mining. Association for Computing Machinery, San Francisco, CA, USA, pp. 263–268Google Scholar
  8. Dolnicar, S. (2003). Using cluster analysis for market segmentation—typical misconceptions, established methodological weaknesses and some recommendations for improvement. Australasian Journal of Market Research, 11(2), 5–12.CrossRefGoogle Scholar
  9. Dolnicar, S., & Grün, B. (2009). Challenging “factor-cluster segmentation”. Journal of Travel Research, 47(1), 63–71.CrossRefGoogle Scholar
  10. Dolnicar, S., & Lazarevski, K. (2009). Methodological reasons for the theory/practice divide in market segmentation. Journal of Marketing Management, 25(3–4), 357–373.CrossRefGoogle Scholar
  11. Dolnicar, S., Grün, B., Leisch, F., & Schmidt, F. (2014). Required sample sizes for data-driven market segmentation analyses in tourism. Journal of Travel Research, 53(3), 296–306.CrossRefGoogle Scholar
  12. Dolnicar, S., Grün, B., & Leisch, F. (2016). Increasing sample size compensates for data problems in segmentation studies. Journal of Business Research, 69(2), 992–999.CrossRefGoogle Scholar
  13. Kaufman, L., & Rousseeuw, P. J. (2005). Finding groups in data. An introduction to cluster analysis. Hoboken, NY: Wiley.Google Scholar
  14. Kotler, P., & Keller, K. L. (2015). Marketing management (15th ed.). Upper Saddle River, NJ: Prentice Hall.Google Scholar
  15. Lilien, G. L., & Rangaswamy, A. (2004). Marketing engineering. Computer-assisted marketing analysis and planning (2nd ed.). Bloomington: Trafford Publishing.Google Scholar
  16. Milligan, G. W., & Cooper, M. (1988). A study of variable standardization. Journal of Classification, 5(2), 181–204.CrossRefGoogle Scholar
  17. Park, H.-S., & Jun, C.-H. (2009). A simple and fast algorithm for K-medoids clustering. Expert Systems with Applications, 36(2), 3336–3341.CrossRefGoogle Scholar
  18. Punj, G., & Stewart, D. W. (1983). Cluster analysis in marketing research: Review and suggestions for application. Journal of Marketing Research, 20(2), 134–148.CrossRefGoogle Scholar
  19. Qiu, W., & Joe, H. (2009). clusterGeneration: Random cluster generation (with specified degree of separation). R package version 1.2.7. https://cran.r-project.org/web/packages/clusterGeneration/clusterGeneration.pdf. Accessed 04 May 2018.
  20. Roberts, J. H., Kayande, U. K., & Stemersch, S. (2014). From academic research to marketing practice: Exploring the marketing science value chain. International Journal of Research in Marketing, 31(2), 127–140.CrossRefGoogle Scholar
  21. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.CrossRefGoogle Scholar
  22. Sheppard, A. (1996). The sequence of factor analysis and cluster analysis: Differences in segmentation and dimensionality through the use of raw and factor scores. Tourism Analysis, 1, 49–57.Google Scholar
  23. Tonks, D. G. (2009). Validity and the design of market segments. Journal of Marketing Management, 25(3/4), 341–356.CrossRefGoogle Scholar
  24. Wedel, M., & Kamakura, W. A. (2000). Market segmentation: Conceptual and methodological foundations (2nd ed.). Boston, NJ: Kluwer Academic.CrossRefGoogle Scholar
  25. Van Der Kloot, W. A., Spaans, A. M. J., & Heinser, W. J. (2005). Instability of hierarchical cluster analysis due to input order of the data: The PermuCLUSTER solution. Psychological Methods, 10(4), 468–476.CrossRefGoogle Scholar

Further Reading

  1. Bottomley, P., & Nairn, A. (2004). Blinded by science: The managerial consequences of inadequately validated cluster analysis solutions. International Journal of Market Research, 46(2), 171–187.CrossRefGoogle Scholar
  2. Dolnicar, S., Grün, B., & Leisch, F. (2016). Increasing sample size compensates for data problems in segmentation studies. Journal of Business Research, 69(2), 992–999.CrossRefGoogle Scholar
  3. Dolnicar, S., & Leisch, F. (2017). Using segment level stability to select target segments in data-driven market segmentation studies. Marketing Letters, 28(3), 423–436.CrossRefGoogle Scholar
  4. Ernst, D., & Dolnicar, S. (2017). How to avoid random market segmentation solutions. Journal of Travel Research, 57(1), 69–82.CrossRefGoogle Scholar
  5. Punj, G., & Stewart, D. W. (1983). Cluster analysis in marketing research: Review and suggestions for application. Journal of Marketing Research, 20(2), 134–148.CrossRefGoogle Scholar
  6. Romesburg, C. (2004). Cluster analysis for researchers. Morrisville: Lulu Press.Google Scholar
  7. Wedel, M., & Kamakura, W. A. (2000). Market segmentation: Conceptual and methodological foundations (2nd ed.). Boston: Kluwer Academic.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Marko Sarstedt
    • 1
  • Erik Mooi
    • 2
  1. 1.Faculty of Economics and ManagementOtto-von-Guericke- University MagdeburgMagdeburgGermany
  2. 2.Department of Management and MarketingThe University of MelbourneParkville, VICAustralia

Personalised recommendations