Principal Component and Factor Analysis

  • Marko Sarstedt
  • Erik Mooi
Part of the Springer Texts in Business and Economics book series (STBE)


We first provide comprehensive and advanced access to principal component analysis, factor analysis, and reliability analysis. Based on a discussion of the different types of factor analytic procedures (exploratory factor analysis, confirmatory factor analysis, and structural equation modeling), we introduce the steps involved in a principal component analysis and a reliability analysis, offering guidelines for executing them in SPSS. Specifically, we cover the requirements for running an analysis, modern options for extracting the factors and deciding on their number, as well as for interpreting and judging the quality of the results. Based on a step-by-step description of SPSS’s menu options, we present an in-depth discussion of each element of the SPSS output. Interpretation of output can be difficult, which we make much easier by means of various illustrations and applications, using a detailed case study to quickly make sense of the results. We conclude with suggestions for further readings on the use, application, and interpretation of factor analytic procedures.


Confirmatory Factor Analysis Experiment Onboard Kaiser Criterion Factor Extraction Computed Factor Scores 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Brown, J. D. (2009). Choosing the right type of rotation in PCA and EFA. JALT Testing & Evaluation SIG Newsletter, 13(3), 20–25.Google Scholar
  2. Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1(2), 245–276.CrossRefGoogle Scholar
  3. Cliff, N. (1987). Analyzing multivariate data. New York, NJ: Harcourt Brace Jovanovich.Google Scholar
  4. Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334.CrossRefGoogle Scholar
  5. Diamantopoulos, A., & Siguaw, J. A. (2000). Introducing LISREL: A guide for the uninitiated. London: Sage.CrossRefGoogle Scholar
  6. Dinno, A. (2009). Exploring the sensitivity of Horn’s parallel analysis to the distributional form of random data. Multivariate Behavioral Research, 44(3), 362–388.CrossRefGoogle Scholar
  7. DiStefano, C., Zhu, M., & Mîndriă, D. (2009). Understanding and using factor scores: Considerations fort he applied researcher. Practical Assessment, Research & Evaluation, 14(20), 1–11.Google Scholar
  8. Festge, F., & Schwaiger, M. (2007). The drivers of customer satisfaction with industrial goods: An international study. Advances in International Marketing, 18, 179–207.Google Scholar
  9. Gorsuch, R. L. (1983). Factor analysis (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  10. Graffelman, J. (2013). Linear-angle correlation plots: New graphs for revealing correlation structure. Journal of Computational and Graphical Statistics, 22(1), 92–106.CrossRefGoogle Scholar
  11. Grice, J. W. (2001). Computing and evaluating factor scores. Psychological Methods, 6(4), 430–450.CrossRefGoogle Scholar
  12. Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis. A global perspective (8th ed.). Boston. MA: Cengage.Google Scholar
  13. Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139–151.CrossRefGoogle Scholar
  14. Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017a). A primer on partial least squares structural equation modeling (PLS-SEM) (2nd ed.). Thousand Oaks, CA: Sage.Google Scholar
  15. Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., & Thiele, K. O. (2017b). Mirror, mirror on the wall. A comparative evaluation of composite-based structural equation modeling methods. Journal of the Academy of Marketing Science, 45(5), 616–632.CrossRefGoogle Scholar
  16. Hair, J. F., Sarstedt, M., Ringle, C. M., & Gudergan, S. P. (2018). Advanced issues in partial least squares structural equation modeling (PLS-SEM). Thousand Oaks, CA: Sage.Google Scholar
  17. Hamilton, L. C. (2013), Statistics with Stata: Version 12: Cengage Learning.Google Scholar
  18. Hayton, J. C., Allen, D. G., & Scarpello, V. (2004). Factor retention decisions in exploratory factor analysis: A tutorial on parallel analysis. Organizational Research Methods, 7(2), 191–205.CrossRefGoogle Scholar
  19. Henson, R. K., & Roberts, J. K. (2006). Use of exploratory factor analysis in published research: Common errors and some comment on improved practice. Educational and Psychological Measurement, 66(3), 393–416.CrossRefGoogle Scholar
  20. Hershberger, S. L. (2005). Factor scores. In: B. S. Everitt & D. C. Howell (Eds.), Encyclopedia of statistics in behavioral science (pp. 636–644). New York, NJ: John Wiley.Google Scholar
  21. Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179–185.CrossRefGoogle Scholar
  22. Jöreskog, K. G. (1971). Simultaneous factor analysis in several populations. Psychometrika, 36(4), 409–426.CrossRefGoogle Scholar
  23. Kaiser, H. F. (1958). The varimax criterion for factor analytic rotation in factor analysis. Educational and Psychological Measurement, 23(3), 770–773.Google Scholar
  24. Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31–36.CrossRefGoogle Scholar
  25. Kim, J. O., & Mueller, C. W. (1978). Introduction to factor analysis: What it is and how to do it. Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
  26. Longman, R. S., Cota, A. A., Holden, R. R., & Fekken, G. C. (1989). A regression equation for the parallel analysis criterion in principal components analysis: Mean and 95th percentile Eigenvalues. Multivariate Behavioral Research, 24(1), 59–69.CrossRefGoogle Scholar
  27. MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis. Psychological Methods, 4(1), 84–99.CrossRefGoogle Scholar
  28. Matsunga, M. (2010). How to factor-analyze your data right: Do’s and don’ts and how to’s. International Journal of Psychological Research, 3(1), 97–110.CrossRefGoogle Scholar
  29. Mulaik, S. A. (2009). Foundations of factor analysis (2nd ed.). London: Chapman & Hall.Google Scholar
  30. O'Connor, B. P. (2000). SPSS and SAS programs for determining the number of components using parallel analysis and Velicer's MAP test. Behavior Research Methods, Instruments, & Computers, 32(3), 396–402.CrossRefGoogle Scholar
  31. Preacher, K. J., & MacCallum, R. C. (2003). Repairing Tom Swift’s electric factor analysis machine. Understanding Statistics, 2(1), 13–43.CrossRefGoogle Scholar
  32. Russell, D. W. (2002). In search of underlying dimensions: The use (and abuse) of factor analysis in Personality and Social Psychology Bulletin. Personality and Social Psychology Bulletin, 28(12), 1629–1646.CrossRefGoogle Scholar
  33. Sarstedt, M., Schwaiger, M., & Ringle, C. M. (2009). Do we fully understand the critical success factors of customer satisfaction with industrial goods? Extending Festge and Schwaiger’s model to account for unobserved heterogeneity. Journal of Business Market Management, 3(3), 185–206.CrossRefGoogle Scholar
  34. Sarstedt, M., Ringle, C. M., Raithel, S., & Gudergan, S. (2014). In pursuit of understanding what drives fan satisfaction. Journal of Leisure Research, 46(4), 419–447.CrossRefGoogle Scholar
  35. Sarstedt, M., Hair, J. F., Ringle, C. M., Thiele, K. O., & Gudergan, S. P. (2016). Estimation issues with PLS and CBSEM: Where the bias lies!. Journal of Business Research, 69(10), 3998–4010.CrossRefGoogle Scholar
  36. Steiger, J. H. (1979). Factor indeterminacy in the 1930's and the 1970's some interesting parallels. Psychometrika, 44(2), 157–167.CrossRefGoogle Scholar
  37. Stevens, J. P. (2009). Applied multivariate statistics for the social sciences (5th ed.). Hillsdale: Erlbaum.Google Scholar
  38. Velicer, W. F., & Jackson, D. N. (1990). Component analysis versus common factor analysis: Some issues in selecting an appropriate procedure. Multivariate Behavioral Research, 25(1), 1–28.CrossRefGoogle Scholar
  39. Widaman, K. F. (1993). Common factor analysis versus principal component analysis: Differential bias in representing model parameters?. Multivariate Behavioral Research, 28(3), 263–311.CrossRefGoogle Scholar
  40. Wold, H. O. A. (1982). Soft modeling: The basic design and some extensions. In: K. G. Jöreskog & H. O. A. Wold (Eds.), Systems under indirect observations: Part II (pp. 1–54). Amsterdam: North-Holland.Google Scholar
  41. Zwick, W. R., & Velicer, W. F. (1986). Comparison of five rules for determining the number of components to retain. Psychological Bulletin, 99(3), 432–442.CrossRefGoogle Scholar

Further Reading

  1. Nunnally, J. C., & Bernstein, I. H. (1993). Psychometric theory (3rd ed.). New York: McGraw-Hill.Google Scholar
  2. Stewart, D. W. (1981). The application and misapplication of factor analysis in marketing research. Journal of Marketing Research, 18(1), 51–62.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Marko Sarstedt
    • 1
  • Erik Mooi
    • 2
  1. 1.Faculty of Economics and ManagementOtto-von-Guericke- University MagdeburgMagdeburgGermany
  2. 2.Department of Management and MarketingThe University of MelbourneParkville, VICAustralia

Personalised recommendations