Advertisement

Data

  • Marko Sarstedt
  • Erik Mooi
Chapter
  • 132k Downloads
Part of the Springer Texts in Business and Economics book series (STBE)

Abstract

In market research, data is critical. Testing, measuring, improving, or creating new goods and services are difficult, or even impossible, without product and customer data. We discuss the different types of data, how they are constructed, and their attributes. We subsequently discuss the advantages and disadvantages of primary and secondary data and what each type allows you to do. We show you how to assess data’s validity and reliability, and discuss the implications that measurement errors can have for your data’s quality. We conclude with a discussion of important concepts, such as population, probability and non-probability sampling, and the relevance of sample size for market research.

Keywords

Brand Trust Qualitative Data Coding Drawing Representative Samples Concept Lattice Consumer Expenditure Survey 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Armstrong, J. S., & Overton, T. S. (1977). Estimating nonresponse bias in mail surveys. Journal of Marketing Research, 14(3), 396–403.CrossRefGoogle Scholar
  2. Bearden, W. O., Netemeyer, R. G., & Haws, K. L. (2011). Handbook of marketing scales. Multi-item measures for marketing and consumer behavior research (3rd ed.). Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
  3. Bollen, K. A. (2002). Latent variables in psychology and the social sciences. Annual Review of Psychology, 53(1), 605–634.CrossRefGoogle Scholar
  4. Bollen, K. A., & Diamantopoulos, A. (2017). In defense of causal-formative indicators: A minority report. Psychological Methods, 22(3), 581–596.CrossRefGoogle Scholar
  5. DeVellis, R. F. (2017). Scale development: Theory and applications (4th ed.). Thousand Oaks, CA: Sage.Google Scholar
  6. Diamantopoulos, A. (2006). The error term in formative measurement models: Interpretation and modeling implications. Journal of Modelling in Management, 1(1), 7–17.CrossRefGoogle Scholar
  7. Diamantopoulos, A., Riefler, P., & Roth, K. P. (2008). Advancing formative measurement models. Journal of Business Research, 61(12), 1203–1218.CrossRefGoogle Scholar
  8. Diamantopoulos, A., Sarstedt, M., Fuchs, C., Wilczynski, P., & Kaiser, S. (2012). Guidelines for choosing between multi-item and single-item scales for construct measurement: A predictive validity perspective. Journal of the Academy of Marketing Science, 40(3), 434–449.CrossRefGoogle Scholar
  9. Erdem, T., & Swait, J. (2004). Brand credibility, brand consideration, and choice. Journal of Consumer Research, 31(1), 191–198.CrossRefGoogle Scholar
  10. ESOMAR (2017). Global market research report. Available at: https://www.esomar.org/knowledge-center/library?publication=2892.Accessed 03 May 2018.
  11. Geyskens, I., Steenkamp, J.-B. E. M., & Kumar, N. (1998). Generalizations about trust in marketing channel relationships using meta-analysis. International Journal of Research in Marketing, 15(3), 223–248.CrossRefGoogle Scholar
  12. Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135.CrossRefGoogle Scholar
  13. Kaplan, A. (1964). The conduct of inquiry: San Francisco, CA: Chandler.Google Scholar
  14. Kukull, W. A., & Ganguli, M. (2012). Generalizability. The trees, the forest, and the low-hanging fruit. Neurology, 78(23), 1886–1891.CrossRefGoogle Scholar
  15. Kuppelwieser, V., & Sarstedt, M. (2014). Confusion about the dimensionality and measurement specification of the future time perspective scale. International Journal of Advertising, 33(1), 113–136.CrossRefGoogle Scholar
  16. Levy, P. S., & Lemeshow, S. (2013). Sampling of populations: Methods and applications (5th ed.). Hoboken, NJ: John Wiley & Sons.Google Scholar
  17. Lindner, J. R., Murphy, T. H., & Briers, G. E. (2001). Handling nonresponse in social science research. Journal of Agricultural Education, 42(4), 43–53.CrossRefGoogle Scholar
  18. Mitchell, M. L., & Jolley, J. M. (2013). Research design explained (8th ed.). Belmont, CA: Wadsworth.Google Scholar
  19. Moser, C. A., & Stuart, A. (1953). An experimental study of quota sampling. Journal of the Royal Statistical Society. Series A General, 116(4), 349–405.CrossRefGoogle Scholar
  20. Netemeyer, R. G., Bearden, W. O., & Sharma, S. (2003). Scaling procedures: Issues and applications. Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
  21. Reichheld, F. F. (2003). The one number you need to grow. Harvard Business Review, 81(12), 46–55.Google Scholar
  22. Sarstedt, M., & Schloderer, M. P. (2010). Developing a measurement approach for reputation of nonprofit organizations. International Journal of Nonprofit and Voluntary Sector Marketing, 15(3), 276–299.Google Scholar
  23. Sarstedt, M., Diamantopoulos, A., Salzberger, T., & Baumgartner, P. (2016a). Selecting single items to measure doubly-concrete constructs: A cautionary tale. Journal of Business Research, 69(8), 3159–3167.CrossRefGoogle Scholar
  24. Sarstedt, M., Diamantopoulos, A., & Salzberger, T. (2016b). Should we use single items? Better not. Journal of Business Research, 69(8), 3199–3203.CrossRefGoogle Scholar
  25. Sarstedt, M., Hair, J. F., Ringle, C. M., Thiele, K. O., & Gudergan, S. P. (2016c). Estimation issues with PLS and CBSEM: Where the bias lies! Journal of Business Research, 69(10), 3998–4010.CrossRefGoogle Scholar
  26. Sarstedt, M., Bengart, P., Shaltoni, A. M., & Lehmann, S. (2018). The use of sampling methods in advertising research: A gap between theory and practice. International Journal of Advertising, 37(4), 650–663.CrossRefGoogle Scholar
  27. Stephenson, C. B. (1979). Probability sampling with quotas: An experiment. Public Opinion Quarterly, 43(4), 477–496.CrossRefGoogle Scholar

Further Reading

  1. Churchill, G. A. (1979). A paradigm for developing better measures for marketing constructs. Journal of Marketing Research, 16(1), 64–73.CrossRefGoogle Scholar
  2. Cochran, W. G. (1977). Sampling techniques (3rd ed.). New York, NY: John Wiley and Sons.Google Scholar
  3. Diamantopoulos, A., & Winklhofer, H. M. (2001). Index construction with formative indicators: an alternative to scale development. Journal of Marketing Research, 38(2), 269–277.CrossRefGoogle Scholar
  4. DeVellis, R. F. (2017). Scale development: Theory and applications (4th ed.). Thousand Oaks, CA: Sage.Google Scholar
  5. Marketing Scales Database at www.marketingscales.com/search/search.php
  6. Mitchell, M. L., & Jolley, J. M. (2013). Research design explained (8th ed.). Belmont, CA: Wadsworth.Google Scholar
  7. Netemeyer, R. G., Bearden, W. O., & Sharma, S. (2003). Scaling procedures: Issues and applications. Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
  8. Paas, L.J., & Morren, M. (2018). Please do not answer if you are reading this: Respondent attention in online panels. Marketing Letters, 29(1), 13–21.CrossRefGoogle Scholar
  9. Revilla, M., & Ochoa, C. (2018). Alternative methods for selecting web survey samples. International Journal of Maret Research, 60(4), 352-265.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Marko Sarstedt
    • 1
  • Erik Mooi
    • 2
  1. 1.Faculty of Economics and ManagementOtto-von-Guericke- University MagdeburgMagdeburgGermany
  2. 2.Department of Management and MarketingThe University of MelbourneParkville, VICAustralia

Personalised recommendations