Visible Light Communication Technology Development Trend

Part of the Signals and Communication Technology book series (SCT)


LEDs offer many advantages including threshold-less operation, high fabrication yield, high energy efficiency, fast response and reduced complexity of driver, reducing the requirement for threshold feedback control significantly, thus reducing the overall cost, form factor, and power consumption of transmitters.


  1. 1.
    Yun, J.H., Cho, H.S., Bae, K.B., Sudhakar, S., Kang, Y.S., Lee, J.S., Polyakov, A.Y., Lee, I.H.: Enhanced optical properties of nanopillar light-emitting diodes by coupling localized surface plasmon of Ag = SiO2 nanoparticles. Appl. Phys. Exp. 8, 092002-1–092002-5 (2015)Google Scholar
  2. 2.
    Okamoto, K., Niki, I., Scherer, A.: Surface plasmon enhanced radiative recombination rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy. Appl. Phys. Lett. 87, 071102-1–071102-4 (2005)Google Scholar
  3. 3.
    Yeh, P.S., Chang, C.C., Chen, Y.T., Lin, D.W., Wu, C. C., He, J.H., Kuo, H.C.: Blue resonant cavity light-emitting diode with half milliwatt output power. In: SPIE OPTO. International Society for Optics and Photonics, 97680P-6 (2016)Google Scholar
  4. 4.
    Green, R.P., et al.: Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes. Appl. Phys. Lett. 102, 091103-1–091103-5 (2013)Google Scholar
  5. 5.
    Huang, J.K., et al.: Enhanced light extraction efficiency of GaN-based hybrid nanorods light-emitting diodes. IEEE J. Sel. Topics Quantum Electron. 21, 354–360 (2015)CrossRefGoogle Scholar
  6. 6.
    Okamoto, K., et al.: High efficiency InGaN/GaN light emitters based on nanophotonics and plasmonics. IEEE J. Sel. Topics Quantum Electron. 15, 1199–1209 (2009)CrossRefGoogle Scholar
  7. 7.
    Sun, G., et al.: Plasmon enhancement of luminescence by metal nanoparticles. IEEE J. Sel. Topics Quantum Electron. 17, 110–118 (2011)CrossRefGoogle Scholar
  8. 8.
    Lin, C.H., et al.: Modulation behaviors of surface plasmon coupled light-emitting diode. Opt. Exp. 23, 8150–8161 (2015)CrossRefGoogle Scholar
  9. 9.
    Huang, K., et al.: Top and bottom emission enhanced electroluminescence of deep-UV light-emitting diodes induced by localised surface plasmons. Sci. Rep. 4, 4380-1–4380-7 (2014)Google Scholar
  10. 10.
    Cho, C.Y., et al.: Surface plasmon enhanced light emission from AlGaN based ultraviolet light-emitting diodes grown on Si (111). Appl. Phys. Lett. 102, 211110-1–211110-5 (2013)Google Scholar
  11. 11.
    Lee, K.J., et al.: Enhanced optical output power by the silver localized surface plasmon coupling through side facets of micro-hole patterned InGaN/GaN light-emitting diodes. Opt. Exp. 22, A1051–A1058 (2014)CrossRefGoogle Scholar
  12. 12.
    Zhu, S.C., et al.: Enhancement of the modulation bandwidth for GaN based light-emitting diode by surface plasmons. Opt. Exp. 23, 13752–13760 (2015)CrossRefGoogle Scholar
  13. 13.
    Lin, Y.Z., et al.: Comprehensive numeric study of gallium nitride light-emitting diodes adopting surface-plasmon-mediated light emission technique. IEEE J. Sel. Topics Quantum Electron. 17, 942–951 (2011)CrossRefGoogle Scholar
  14. 14.
    Langhammer, C., et al.: Localized surface plasmon resonances in aluminum nanodisks. Nano Lett. 8, 14611471 (2008)CrossRefGoogle Scholar
  15. 15.
    Tateishi, K., et al.: Highly enhanced green emission from InGaN quantum wells due to surface plasmon resonance on aluminum films. Appl. Phys. Lett. 106, 121112-1–121112-6 (2015)CrossRefGoogle Scholar
  16. 16.
    Komine, T., Nakagawa, M.: Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron. 50(1), 100–107 (2004)CrossRefGoogle Scholar
  17. 17.
    Kahn, J.M., You, R., Djahani, P., et al.: Imaging diversity receivers for high-speed infrared wireless communication. Commun. Mag. IEEE 36(12), 88–94 (1998)CrossRefGoogle Scholar
  18. 18.
    Wang, Y., Chi, N., Wang, Y., Tao, L., Shi, J.: Network architecture of a high-speed visible light communication local area network. IEEE Photonics Technol. Lett. 27(2), 197–200 (2015)Google Scholar

Copyright information

© Tsinghua University Press, Beijing and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Fudan UniversityShanghaiChina

Personalised recommendations