Advertisement

High-Speed VLC Communication System Experiments

Chapter
Part of the Signals and Communication Technology book series (SCT)

Abstract

Speed is an important indicator of a communication system, and providing high-speed wireless access is also a significant advantage of visible light communication. At present, the transmission rate of Wi-fi is about 100 Mbit/s, and the power line communication is basically at this rate and even lower. Compared with traditional wireless access technology, visible light communication can realize more high-speed wireless access due to its potentially huge bandwidth.

References

  1. 1.
    Li, J., Huang, Z., Liu, X., Ji, Y.: Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems. Opt. Exp. 23(1), 611–619 (2015)CrossRefGoogle Scholar
  2. 2.
    Wang, Y., Tao, L., Huang, X., Shi, J., Chi, N.: Enhanced performance of a high speed WDM CAP64 VLC system employing Volterra series based nonlinear equalizer. IEEE Photonics J. 7(3), 1–7 (2015)Google Scholar
  3. 3.
    Cossu, G., Khalid, A.M., Choudhury, P., Corsini, R., Ciaramella, E.: 3.4 Gbit/s visible optical wireless transmission based on RGB LED. Opt. Exp. 20(26), B501–B506 (2012)CrossRefGoogle Scholar
  4. 4.
    Tao, L., Wang, Y., Gao, Y., Lau, A.P.T., Chi, N., Lu, C.: 40 Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions. IEEE Photonic Technol. Lett. 25(23), 2346–2349 (2013)CrossRefGoogle Scholar
  5. 5.
    Tao, L., Wang, Y., Gao, Y., Lau, A.P.T., Chi, N., Lu, C.: Experimental demonstration of 10 Gb/s multilevel carrier-less amplitude and phase modulation for short range optical communication systems. Opt. Exp. 21(5), 6459–6465 (2013)CrossRefGoogle Scholar
  6. 6.
    Huang, X., Shi, J., Li, J., Wang, Y., Wang, Y., Chi, N.: 750 Mbit/s visible light communications employing 64QAM-OFDM based on amplitude equalization circuit. In: Optical Fiber Communication Conference (OFC), Tu2G.1 (2015)Google Scholar
  7. 7.
    Shafik, R.A., Rahman, M.S., Islam, A.H.M.: On the extended relationships among EVM, BER and SNR as performance metrics. In: Proceedings of International Conference on ICECE, pp. 408–411 (2006)Google Scholar
  8. 8.
    Wang, S.W., Chen, F., Liang, L., He, S., Wang, Y., Chen, X., Lu, W.: A high-performance blue filter for a white-led-based visible light communication system. IEEE Wirel. Commun. 22(2), 61–67 (2015)CrossRefGoogle Scholar
  9. 9.
    Huang, X., Shi, J., Li, J., Wang, Y., Chi, N.: A Gbps VLC transmission using hardware pre-equalization circuit. IEEE Photonics Technol. Lett. 27(18), 1915–1918 (2015)CrossRefGoogle Scholar
  10. 10.
    Fischer, R.F., Huber, J.B.: A new loading algorithm for discrete multitone transmission. In: Proceedings of International Conference on GLOBECOM’96. Communications: The Key to Global Prosperity, vol. 1, pp. 724–728 (1996)Google Scholar
  11. 11.
    Liu, Y.F., Yeh, C.H., Chow, C.W., Liu, Y., Liu, Y.L., Tsang, H.K.: Demonstration of bi-directional LED visible light communication using TDD traffic with mitigation of reflection interference. Opt. Exp. 20(21), 23019–23024 (2012)CrossRefGoogle Scholar
  12. 12.
    Wang, Y. et al.: 875-Mb/s asynchronous bi-directional 64QAM-OFDM SCM-WDM transmission over RGB-LED-based visible light communication system. In: Optical Fiber Communication Conference on Optical Society of America (2013)Google Scholar
  13. 13.
    Cossu, G., Khalid, A.M., Choudhury, P., Corsini, R., Ciaramella, E.: 3.4 Gbit/s visible optical wireless transmission based on RGB LED. Opt. Exp. 20(26), B501–B506 (2012)CrossRefGoogle Scholar
  14. 14.
    Wang, Yuanquan, Yang, Chao, Wang, Yiguang, Chi, Nan: Gigabit polarization division multiplexing in visible light communication. Opt. Lett. 39(7), 1823–1826 (2014)CrossRefGoogle Scholar
  15. 15.
    Wang, Y., Wang, Y., Chi, N., Yu, J., Shang, H.: Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED. Opt. Exp. 21(1), 1203–1208 (2013)Google Scholar
  16. 16.
    Wang, Y., Chi, N., Wang, Y., et al.: High-speed quasi-balanced detection OFDM in visible light communication. Opt. Exp. 21(23), 27558–27564 (2013)CrossRefGoogle Scholar
  17. 17.
    Li, R., Wang, Y., Tang, C. et al.: Improving performance of 750-Mb/s visible light communication system using adaptive Nyquist windowing. Chin. Opt. Lett. 11(8) (2013)Google Scholar
  18. 18.
    Wu, F.M., Lin, C.T., Wei, C.C. et al.: 3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation. In: Proceedings of OFC 2013, OTh1G.4Google Scholar
  19. 19.
    Wang, Y., Shao, Y., Shang, H., Lu, X., Wang, Y., Yu, J., Chi, N.: 875-Mb/s asynchronous bi-directional 64QAM-OFDM SCM-WDM transmission over RGB-LED-based visible light communication system. In: Proceedings of OFC 2013, OTh1G.3Google Scholar
  20. 20.
    Wang, Y., Chi, N., Li, R. et al.: Theoretical and simulation analysis of a novel multiple-input multiple-output scheme over multimode fiber links with dual restricted launch techniques. Opt. Eng. 51(6), 065002-1–065002-7 (2012)Google Scholar
  21. 21.
    Lubin, Z., et al.: High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting. IEEE J. Sel. Areas Commun. 27(9), 1654–1662 (2009)CrossRefGoogle Scholar
  22. 22.
    Jivkova, S., Hristov, B.A., Kavehrad, M.: Power-efficient multi spot diffuse multiple-input-multiple-output approach to broad-band optical wireless communications. In: IEEE Transactions on Vehicular Technology, vol. 53, pp. 882–889 (2004)Google Scholar
  23. 23.
    Azhar, A.H., Tran, T.A., O’Brien, D.: A gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications. IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009)Google Scholar
  24. 24.
    Wang, Y., Chi, N.: Indoor gigabit 2 × 2 imaging multiple-input multiple-output visible light communication. Chin. Opt. Lett. 12(10), 100603 (2014)Google Scholar
  25. 25.
    Falconer, D., Ariyavisitakul, S.L., Benyamin-Seeyar A., Eidson, B.: Frequency domain equalization for single-carrier broadband wireless systems. IEEE Commun. Mag. 40(4) (2002)Google Scholar
  26. 26.
    Li, F., Cao, Z., Li, X. et al.: Fiber-wireless transmission system of PDM-MIMO-OFDM at 100 GHz frequency. J. Lightw. Technol. 31(14), 2394–2399 (2013)Google Scholar
  27. 27.
    Liu, X., Ling, X. et al.: Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM. Opt. Exp. 16(26), 21944–21957 (2008)Google Scholar
  28. 28.
    Wang, Y., Chi, N.: Demonstration of high-speed 2 × 2 non-imaging MIMO Nyquist single carrier visible light communication with frequency domain equalization. J. Lightwave Technol. 32(11) (2014)Google Scholar
  29. 29.
    Koonen, A.M.J., Larrodé, M.G.: Radio-over-MMF techniques—Part II: microwave to millimeter-wave systems. J. Lightw. Technol. 26(15), 2396–2408 (2008)CrossRefGoogle Scholar
  30. 30.
    Shi, J. et al.: Improved performance of a high speed 2 × 2 MIMO VLC network based on EGC-STBC. In: European Conference on Optical Communication (ECOC), IEEE (2015)Google Scholar
  31. 31.
    Alamouti, S.M.: A simple transmit diversity technique for wireless communication. IEEE J. Select. Areas Commun. 16(8), 1451–1458 (1998)Google Scholar
  32. 32.
    Wang, Y., Wang, Y., Chi, N.: Experimental verification of performance improvement for a gigabit WDM visible light communication system utilizing asymmetrically clipped optical OFDM. Photonics Res., 2(5), 138–142, (2014)Google Scholar
  33. 33.
    Wang, Y., Wang, Y., Tao, L., Shi, J., Chi, N.: Experimental demonstration of a novel full-duplex high-speed visible light communication access networks architecture based on frequency division multiplexing. Opt. Eng. 53(11): 116104–116104 (2014).Google Scholar
  34. 34.
    Wang, Y., Chi, N.: Asynchronous multiple access using flexible bandwidth allocation scheme in SCM-based 32/64QAM-OFDM VLC system. Photonic Netw. Commun. 27(2), 57–64 (2014)Google Scholar
  35. 35.
    Wang, Y., Chi, N.: Indoor gigabit 2x2 imaging multiple-input multiple-output visible light communication. Chin. Opt. Lett. 12(10):12–15 (2014)Google Scholar
  36. 36.
    Wang, Y., Zhou, Y., Gui, T., Zhong, K., Zhou, X., Wang, L., Lau, A.P.T., Lu, C., Chi, N.: Efficient MMSE-SQRD based MIMO decoder for SEFDM based 2.4-Gb/s spectrum compressed WDM VLC system. IEEE Photonics J. 8(4): 1–9 (2016)Google Scholar

Copyright information

© Tsinghua University Press, Beijing and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Fudan UniversityShanghaiChina

Personalised recommendations