Advertisement

Visible Light Communication Post-equalization Technology

Chapter
Part of the Signals and Communication Technology book series (SCT)

Abstract

Equalization can be divided into two categories: frequency domain equalization and time domain equalization. The so-called frequency domain equalization corrects the system’s frequency characteristics, so that the total characteristics, including the baseband system equalizer, satisfy the undistorted transmission conditions. The so-called time domain equalization directly corrects distorted waveforms to satisfy the requirements of no inter-symbol interference criterion in the time domain, with parameters generated by the equalizer.

References

  1. 1.
    Zhang, M., Wang, Y., Wang, Z., et al.: A novel scalar MCMMA blind equalization utilized in 8-PAM LED based visible light communication system. In: IEEE International Conference on Communications Workshops. IEEE, pp. 321–325 (2016)Google Scholar
  2. 2.
    Wang, Y., Huang, X., Tao, L., et al.: 4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization. Opt. Express 23(10), 13626–13633 (2015)Google Scholar
  3. 3.
    Bandara, K., Niroopan, P., Chung, Y.: Improved indoor visible light communication with PAM and RLS decision feedback equalizer. Inst. Electron. Telecommun. 59(6), 672–678 (2013)Google Scholar
  4. 4.
    Bandara, K., Chung, Y.: Reduced training sequence using RLS adaptive algorithm with decision feedback equalizer in indoor visible light wireless communication channel. In: IEEE International Conference on ICT Convergence (ICTC, 2012), pp. 149–154Google Scholar
  5. 5.
    Wang, Y., Shi, J., Yang, C., Wang, Y., Chi, N.: Integrated 10Gb/s multi-level multi-band PON and 500 Mb/s indoor VLC system based on N-SC-FDE modulation. Opt. Lett. 39(9), 2576–2579 (2014)Google Scholar
  6. 6.
    Wang, Y., Huang, X., Zhang, J., Wang, Y., Chi, N.: Enhanced performance of visible light communication employing 512-QAM N-SC-FDE and DD-LMS. Opt. Exp. 22(13), 15328–15334 (2014)Google Scholar
  7. 7.
    Wang, Yiguang, et al.: Enhanced performance of a high-speed WDM CAP64 VLC system employing Volterra series-based nonlinear equalizer. IEEE Photonics J. 7(3), 1–7 (2015)Google Scholar
  8. 8.
    Zhou, Y., et al.: A novel memoryless power series based adaptive nonlinear pre-distortion scheme in high speed visible light communication. In: Optical Fiber Communications Conference and Exhibition IEEE, W2A.40 (2017)Google Scholar
  9. 9.
    Kaminow, I., Li, T.: Optical fiber telecommunications IVA. Elsevier Science (2002)Google Scholar
  10. 10.
    Oerder, M., Meyr, H.: Digital filter and square timing recovery. IEEE Trans. Commun. 36(5), 605–612 (1988)CrossRefGoogle Scholar
  11. 11.
    Gardner, F.: A BPSK/QPSK timing-error detector for sampled receivers. IEEE Trans. Commun. 34(5), 423–429 (1986)CrossRefGoogle Scholar
  12. 12.
    Godard, D.: Passband timing recovery in an all-digital modem receiver. IEEE Trans. Commun. 26(5), 517–429 (1978)Google Scholar
  13. 13.
    Mueller, K., Muller, M.: Timing recovery in digital synchronous data receivers. IEEE Trans. Commun. 24(5), 516–531S (1976)CrossRefGoogle Scholar
  14. 14.
    Viterbi, A.: Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission. IEEE Trans. Inf. Theor. 29(4), 543–551 (1983)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Peveling, R., Pfau, T., Aamczyk, O., Eickhoff, R., Noe, R.: Multiplier-free real-time phase tracking for coherent QPSK receivers. IEEE Photonics Technol. Lett. 21(3), 137–139 (2009)CrossRefGoogle Scholar
  16. 16.
    Pfau, T., Hoffmann, S., Noe, R.: Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for -QAM constellations. J. Lightwave Technol. 27(8), 989–999 (2009)CrossRefGoogle Scholar
  17. 17.
    Zhou, X.: An improved feed-forward carrier recovery algorithm for coherent receivers with M-QAM modulation format. IEEE Photon. Technol. Lett. 22(14), 1051–1053 (2010)CrossRefGoogle Scholar
  18. 18.
    Gao, Y., Lau, A., Lu, C., Wu, J., Li, Y., Xu, K.: Low-complexity two-stage carrier phase estimation for 16-QAM systems using QPSK partitioning and maximum likelihood detection. In: Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers Conference, pp. 1–3 (2011)Google Scholar
  19. 19.
    Bülow, H., et al.: Measurement of the maximum speed of PMD fluctuation in installed field fiber. In: Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication. OFC/IOOC’99. Technical Digest, vol. 2, pp. 83–85 (1999)Google Scholar
  20. 20.
    Louchet, H., Kuzmin, K., Richter, A.: Improved DSP algorithms for coherent 16-QAM transmission. In: 34th European Conference on Optical Communication, 2008. ECOC 2008, pp. 1–2 (2008)Google Scholar
  21. 21.
    Zhou, X., Yu, J., Magill, P.: Cascaded two-modulus algorithm for blind polarization demultiplexing of 114-Gb/s PDM-8-QAM optical signals. In: Optical Fiber Communication Conference. Optical Society of America (2009)Google Scholar
  22. 22.
    Spalvieri, A., Valtolina, R.: Data-aided and phase-independent adaptive equalization for data transmission systems. European Patent Application EP 1.089: 457Google Scholar
  23. 23.
    Wang, Y., Huang, X., Zhang, J., Wang, Y., Chi, N.: Enhanced performance of visible light communication employing 512-QAM N-SC-FDE and DD-LMS. Opt. Express 22(13), 15328–15334 (2014)Google Scholar
  24. 24.
    Wang, Y., Shi, J., Yang, C., Wang, Y., Chi, N.: Integrated 10Gb/s multi-level multi-band PON and 500Mb/s indoor VLC system based on N-SC-FDE modulation. Opt. Express 39(9), 2576–2579 (2014)Google Scholar

Copyright information

© Tsinghua University Press, Beijing and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Fudan UniversityShanghaiChina

Personalised recommendations