Part of the Signals and Communication Technology book series (SCT)


The emergence of “smart home” and the rapid spread of intelligent devices have made revolutionary changes to the category of the mobile digital terminal, which brings about a big test to the traditional access of network technology. The dilemmas of the “last mile” from optical fibers to home relate to the limited spectrum of resources regarding the wireless access network, the immaturity of ROF technologies, and electromagnetic radiation, which all restrict the bottleneck breakthrough.


  1. 1.
    Chi, N., Haas, H., Kavehrad, M., Little, M.T., Huang, X.: Visible light communications: demand factors, benefits and opportunities. IEEE J. Wirel. Commun. 22(2), 5–7 (2015)Google Scholar
  2. 2.
    Langer, K.-D., Vučić, J., Kottke, C., et al.: Advances and prospects in high-speed information broadcast using phosphorescent white-light LEDs. In: ICTON, Mo.B5.3 (2009)Google Scholar
  3. 3.
    Cui, K., Chen, G., Xu, Z., Roberts, R.D.: Line-of-sight visible light communication system design and demonstration. CSNDSP 2010, OWC-21 (2010)Google Scholar
  4. 4.
    Tanaka, Y., Haruyama, S., Nakagawa, M.: Wireless optical transmissions with white colored LED for wireless home links. Indoor Mobile Radio Commun. 2, 1325–1329 (2000)Google Scholar
  5. 5.
    Le Minh, H., O’Brien, D., Faulkner, G., et al.: High-speed visible light communications using multiple-resonant equalization. IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008)CrossRefGoogle Scholar
  6. 6.
    Le Minh, H., O’Brien, D., Faulkner, G., et al.: 80 Mbit/s visible light communications using pre-equalized white LED. ECOC 2008, P.6.09 (2008)Google Scholar
  7. 7.
    Vuˇcic´, J., Kottke, C., Nerreter, S., et al.: 513 Mbit/s visible light communications link based on DMT-modulation of a white LED. J. Lightwave Technol. 28(24), 3512–3518 (2010)Google Scholar
  8. 8.
    Kottke, C., Habel, K., Grobe, L., et al.: Single-channel wireless transmission at 806 Mbit/s using a white-light LED and a PIN-based receiver. ICTON, We.B4.1 (2012)Google Scholar
  9. 9.
    Khalid, A.M., Cossu, G., Corsini, R., et al.: 1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation. IEEE Photonics J. 4(5), 1465–1473 (2012)CrossRefGoogle Scholar
  10. 10.
    Wu, F.-M., Lin, C.-T., Wei, C.-C., Chen, C.-W., Huang, H.-T., Ho, C.-H.: 1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation. IEEE Photonics Technol. Lett. 24(19), 1730–1732 (2012)CrossRefGoogle Scholar
  11. 11.
    Grubor, J., Lee, S.C.J., Langer, K.-D., Koonen, T., Walewski, J.W.: Wireless high-speed data transmission with phosphorescent white light LEDs. ECOC 2007, 1–2 (2007)Google Scholar
  12. 12.
    Park, S.-B., Jung, D.K., Shin, H.S., Shin, D.J., Hyun, Y.-J., Lee, K., Oh, Y.J.: Information broadcasting system based on visible light signboard. Proc. Wireless Opt. Commun. 2007, 311–313 (2007)Google Scholar
  13. 13.
    Le Minh, H., O’Brien, D., Faulkner, G., et al.: 100-Mb/s NRZ visible light communications using a postequalized white LED. IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009)CrossRefGoogle Scholar
  14. 14.
    Azhar, A.H., Tran, T.A., O’Brien, D.: Demonstration of high-speed data transmission using MIMO-OFDM visible light communications. In: IEEE Globecom 2010 Workshop on Optical Wireless Communications, pp. 1052–1056 (2010)Google Scholar
  15. 15.
    Vučić, J., Kottke, C., Nerreter, S., Büttner, A., Langer, K.-D., Walewski, J.W.: White light wireless transmission at 200+Mb/s NetData rate by use of discrete-multitone modulation. IEEE Photonics Technol. Lett. 21(20), 1511–1513 (2009)CrossRefGoogle Scholar
  16. 16.
    Vučić, J., Kottke, C., Habel, K., Langer, K.-D.: 803 Mbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary. OSA/OFC/NFOEC: OWB6 (2011)Google Scholar
  17. 17.
    Khan, T.A., Tahir, M., Usman, A.: Visible light communication using wavelength division multiplexing for smart spaces. In: 2012 IEEE Consumer Communications and Networking Conference, pp. 230–234 (2012)Google Scholar
  18. 18.
    Zeng, L., O’Brien, D.C., Le Minh, H., et al.: High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting. IEEE J. Sel. Areas Commun. 27(9), 1654–1662 (2009)CrossRefGoogle Scholar
  19. 19.
    O’Brien, D.: Optical multi-input multi-output systems for short-range free-space data transmission. CSNDSP, pp. 517–521 (2010)Google Scholar
  20. 20.
    O’Brien, D.: Multi-input multi-output (MIMO) indoor optical wireless communications. In: 2009 Conference on Signals, Systems and Computers, pp. 1636–1639 (2009)Google Scholar
  21. 21.
    Wang, Y., Zhang, M., Wang, Y., et al.: Experimental demonstration of visible light communication based on sub-carrier multiplexing of multiple input single output OFDM. In: OECC, pp. 745–746 (2012)Google Scholar
  22. 22.
    Lin, X., Ikawa, K., Hirohashi, K.: High-speed full-duplex multiaccess system for LED-based wireless communications using visible light. In: International symposium on optical engineering and photonic technology: OEPT 2009, pp. 1–5 (2009)Google Scholar
  23. 23.
    Zeng, L., et al.: Improvement of date rate by using equalization in an indoor visible light communication system. In: ICCSC, pp. 678–682 (2008)Google Scholar
  24. 24.
    Shrestha, N., Sohail, M., Viphavakit, C., et al.: Demonstration of visible light communications using RGB LEDs in an indoor environment. In: ECTI-CON, pp. 1159–1163 (2010)Google Scholar
  25. 25.
    Cossu, G., Khalid, A.M., Choudhury, P., Corsini, R., Ciaramella, E.: 3.4 Gbit/s visible optical wireless transmission based on RGB LED. Opt. Express 20, B501–B506 (2012)CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press, Beijing and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Fudan UniversityShanghaiChina

Personalised recommendations