Skip to main content

Neuromuscular Differences Between Men and Women

  • Chapter
  • First Online:

Abstract

Anterior cruciate ligament (ACL) injury prevention strategies have not always been successful. The identification of modifiable risk factors for injury is an important step in the injury prevention process. The gender differences observed in ACL injury rates pose an additional layer of complexity within this process; specifically, what are the sex-specific, modifiable risk factors for noncontact ACL injury? The identification of sex-specific risk factors for noncontact ACL injury facilitates the development of precise interventions. The purpose of this chapter is to outline the dynamic joint stability paradigm and provide an overview of the neuromuscular differences between men and women. The authors’ studies have demonstrated that female athletes have decreased proprioception, compensatory neuromuscular control patterns, enhanced static balance, and decreased lower extremity strength compared with male athletes. These differences have resulted in altered neuromuscular control as observed in the kinematic and kinetic characteristics of the knee during dynamic tasks. Injury prevention and performance optimization must account for these differences, with specificity of training included to reduce the incidence of these debilitating ACL injuries.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hootman JM, Dick R, Agel J (2007) Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives. J Athl Train 42(2):311–319

    PubMed  PubMed Central  Google Scholar 

  2. Swenson DM, Collins CL, Best TM, Flanigan DC, Fields SK, Comstock RD (2013) Epidemiology of knee injuries among U.S. high school athletes, 2005/2006–2010/2011. Med Sci Sports Exerc 45(3):462–469. https://doi.org/10.1249/MSS.0b013e318277acca

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ajuied A, Wong F, Smith C, Norris M, Earnshaw P, Back D, Davies A (2014) Anterior cruciate ligament injury and radiologic progression of knee osteoarthritis: a systematic review and meta-analysis. Am J Sports Med 42(9):2242–2252. https://doi.org/10.1177/0363546513508376

    Article  PubMed  Google Scholar 

  4. Lohmander LS, Englund PM, Dahl LL, Roos EM (2007) The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med 35(10):1756–1769

    Article  PubMed  Google Scholar 

  5. Lohmander LS, Ostenberg A, Englund M, Roos H (2004) High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 50(10):3145–3152

    Article  CAS  PubMed  Google Scholar 

  6. Agel J, Arendt EA, Bershadsky B (2005) Anterior cruciate ligament injury in National Collegiate Athletic Association Basketball and Soccer: a 13-year review. Am J Sports Med 33(4):524–531

    Article  PubMed  Google Scholar 

  7. Arendt E, Dick R (1995) Knee injury patterns among men and women in collegiate basketball and soccer. NCAA data and review of literature. Am J Sports Med 23(6):694–701

    Article  CAS  PubMed  Google Scholar 

  8. Stanley LE, Kerr ZY, Dompier TP, Padua DA (2016) Sex differences in the incidence of anterior cruciate ligament, medial collateral ligament, and meniscal injuries in collegiate and high school sports: 2009–2010 through 2013–2014. Am J Sports Med 44(6):1565–1572. https://doi.org/10.1177/0363546516630927

    Article  PubMed  Google Scholar 

  9. Ardern CL, Webster KE, Taylor NF, Feller JA (2011) Return to sport following anterior cruciate ligament reconstruction surgery: a systematic review and meta-analysis of the state of play. Br J Sports Med 45(7):596–606. https://doi.org/10.1136/bjsm.2010.076364

    Article  PubMed  Google Scholar 

  10. Donnell-Fink LA, Klara K, Collins JE, Yang HY, Goczalk MG, Katz JN, Losina E (2015) Effectiveness of knee injury and anterior cruciate ligament tear prevention programs: a meta-analysis. PLoS One 10(12):e0144063. https://doi.org/10.1371/journal.pone.0144063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Mascarenhas R, Cvetanovich GL, Sayegh ET, Verma NN, Cole BJ, Bush-Joseph C, Bach BR Jr (2015) Does double-bundle anterior cruciate ligament reconstruction improve postoperative knee stability compared with single-bundle techniques? A systematic review of overlapping meta-analyses. Arthroscopy 31(6):1185–1196. https://doi.org/10.1016/j.arthro.2014.11.014

    Article  PubMed  Google Scholar 

  12. Zeng C, Gao SG, Li H, Yang T, Luo W, Li YS, Lei GH (2016) Autograft versus allograft in anterior cruciate ligament reconstruction: a meta-analysis of randomized controlled trials and systematic review of overlapping systematic reviews. Arthroscopy 32(1):153–163.e118. https://doi.org/10.1016/j.arthro.2015.07.027

    Article  PubMed  Google Scholar 

  13. Sell TC, Abt JP, Crawford K, Lovalekar M, Nagai T, Deluzio JB, Smalley BW, McGrail MA, Rowe RS, Cardin S, Lephart SM (2010) Warrior model for human performance and injury prevention: eagle tactical athlete program (ETAP)—part I. J Spec Oper Med 10(4):2–21

    PubMed  Google Scholar 

  14. Sell TC, Abt JP, Nagai T, Deluzio JB, Lovalekar M, Wirt MD, Lephart SM (2016) The eagle tactical athlete program reduces musculoskeletal injuries in the 101st airborne division (air assault). Mil Med 181(3):250–257. https://doi.org/10.7205/MILMED-D-14-00674

    Article  PubMed  Google Scholar 

  15. Daniel DM, Malcom LL, Losse G, Stone ML, Sachs R, Burks R (1985) Instrumented measurement of anterior laxity of the knee. J Bone Joint Surg Am 67(5):720–726

    Article  CAS  PubMed  Google Scholar 

  16. Lephart SM, Abt JP, Ferris CM (2002) Neuromuscular contributions to anterior cruciate ligament injuries in females. Curr Opin Rheumatol 14(2):168–173

    Article  PubMed  Google Scholar 

  17. McNair PJ, Marshall RN (1994) Landing characteristics in subjects with normal and anterior cruciate ligament deficient knee joints. Arch Phys Med Rehabil 75(5):584–589

    PubMed  CAS  Google Scholar 

  18. Venes D, Thomas CL, Taber CW (2001) Taber’s cyclopedic medical dictionary. Ed. 19, illustrated in full color/edn. F.A.Davis Co., Philadelphia

    Google Scholar 

  19. LeVeau BF, Williams M (1992) Williams & Lissner’s biomechanics of human motion, 3rd edn. W.B. Saunders Co., Philadelphia

    Google Scholar 

  20. Riemann BL, Lephart SM (2002) The sensorimotor system. Part I. The physiologic basis of functional joint stability. J Athl Train 37(1):71–79

    PubMed  PubMed Central  Google Scholar 

  21. Solomonow M, Krogsgaard M (2001) Sensorimotor control of knee stability. A review. Scand J Med Sci Sports 11(2):64–80

    Article  CAS  PubMed  Google Scholar 

  22. Johansson H, Sjolander P (1993) The neurophysiology of joints. In: Wright V, Radin EL (eds) Mechanics of joints: physiology, pathophysiology, and treatment. Marcel Dekker Inc., New York, NY, pp 243–290

    Google Scholar 

  23. Lew WD, Lewis JL, Craig EV (1993) Stabilization by capsule, ligaments, and labrum: stability at the extremes of motion. In: Matsen FA, Fu FH, Hawkins RJ (eds) The shoulder: a balance of mobility and stability. American Academy of Orthopaedic Surgeons, Rosemont, IL, pp 69–89

    Google Scholar 

  24. Ghez C, Krakauer J (2000) The organization of movement. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of neural science. McGraw-Hill, Health Professions Division, New York, pp 653–673

    Google Scholar 

  25. Smith BA, Livesay GA, Woo SL (1993) Biology and biomechanics of the anterior cruciate ligament. Clin Sports Med 12(4):637–670

    PubMed  CAS  Google Scholar 

  26. Ahmed AM, Hyder A, Burke DL, Chan KH (1987) In-vitro ligament tension pattern in the flexed knee in passive loading. J Orthop Res 5(2):217–230

    Article  CAS  PubMed  Google Scholar 

  27. Berns GS, Hull ML, Patterson HA (1992) Strain in the anteromedial bundle of the anterior cruciate ligament under combination loading. J Orthop Res 10(2):167–176

    Article  CAS  PubMed  Google Scholar 

  28. Markolf KL, Burchfield DM, Shapiro MM, Shepard MF, Finerman GA, Slauterbeck JL (1995) Combined knee loading states that generate high anterior cruciate ligament forces. J Orthop Res 13(6):930–935

    Article  CAS  PubMed  Google Scholar 

  29. Butler DL, Noyes FR, Grood ES (1980) Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. J Bone Joint Surg Am 62(2):259–270

    Article  CAS  PubMed  Google Scholar 

  30. Markolf KL, Gorek JF, Kabo JM, Shapiro MS (1990) Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique. J Bone Joint Surg Am 72(4):557–567

    Article  CAS  PubMed  Google Scholar 

  31. Andriacchi TP, Briant PL, Bevill SL, Koo S (2006) Rotational changes at the knee after ACL injury cause cartilage thinning. Clin Orthop Relat Res 442:39–44

    Article  PubMed  Google Scholar 

  32. Tashman S, Collon D, Anderson K, Kolowich P, Anderst W (2004) Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med 32(4):975–983

    Article  PubMed  Google Scholar 

  33. Tashman S, Kolowich P, Collon D, Anderson K, Anderst W (2007) Dynamic function of the ACL-reconstructed knee during running. Clin Orthop Relat Res 454:66–73. https://doi.org/10.1097/BLO.0b013e31802bab3e

    Article  PubMed  Google Scholar 

  34. Lephart SM, Fu FH (2000) Proprioception and neuromuscular control in joint stability. Human Kinetics, Champaign, IL

    Google Scholar 

  35. Lephart SM, Warner JP, Borsa PA, Fu FH (1994) Proprioception of the shoulder joint in healthy, unstable, and surgically repaired shoulders. J Shoulder Elb Surg 3(6):371–380

    Article  CAS  Google Scholar 

  36. Markolf KL, Mensch JS, Amstutz HC (1976) Stiffness and laxity of the knee--the contributions of the supporting structures. A quantitative in vitro study. J Bone Joint Surg Am 58(5):583–594

    Article  CAS  PubMed  Google Scholar 

  37. Musahl V, Seil R, Zaffagnini S, Tashman S, Karlsson J (2011) The role of static and dynamic rotatory laxity testing in evaluating ACL injury. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-011-1830-4

  38. Borsa PA, Lephart SM, Irrgang JJ, Safran MR, Fu FH (1997) The effects of joint position and direction of joint motion on proprioceptive sensibility in anterior cruciate ligament-deficient athletes. Am J Sports Med 25(3):336–340

    Article  CAS  PubMed  Google Scholar 

  39. Lephart SM, Pincivero DM, Giraldo JL, Fu FH (1997) The role of proprioception in the management and rehabilitation of athletic injuries. Am J Sports Med 25(1):130–137

    Article  CAS  PubMed  Google Scholar 

  40. Gardinier ES, Manal K, Buchanan TS, Snyder-Mackler L (2012) Gait and neuromuscular asymmetries after acute ACL rupture. Med Sci Sports Exerc. https://doi.org/10.1249/MSS.0b013e31824d2783

  41. Kalund S, Sinkjaer T, Arendt-Nielsen L, Simonsen O (1990) Altered timing of hamstring muscle action in anterior cruciate ligament deficient patients. Am J Sports Med 18(3):245–248

    Article  CAS  PubMed  Google Scholar 

  42. Williams GN, Barrance PJ, Snyder-Mackler L, Buchanan TS (2004) Altered quadriceps control in people with anterior cruciate ligament deficiency. Med Sci Sports Exerc 36(7):1089–1097

    Article  PubMed  Google Scholar 

  43. Eastlack ME, Axe MJ, Snyder-Mackler L (1999) Laxity, instability, and functional outcome after ACL injury: copers versus noncopers. Med Sci Sports Exerc 31(2):210–215

    Article  CAS  PubMed  Google Scholar 

  44. Lephart SM, Kocher MS, Fu FH, Borsa PA, Harner CD (1992) Proprioception following anterior cruciate ligament reconstruction. J Sport Rehabil 1:188–196

    Article  Google Scholar 

  45. Lephart SM, Henry TJ (1995) Functional rehabilitation for the upper and lower extremity. Orthop Clin N Am 26(3):579–592

    CAS  Google Scholar 

  46. Swanik CB, Lephart SM, Giannantonio FP, Fu FH (1997) Reestablishing proprioception and neuromuscular control in the ACL-injured athlete. J Sport Rehabil 6:182–206

    Article  Google Scholar 

  47. Caraffa A, Cerulli G, Projetti M, Aisa G, Rizzo A (1996) Prevention of anterior cruciate ligament injuries in soccer. A prospective controlled study of proprioceptive training. Knee Surg Sports Traumatol Arthrosc 4(1):19–21

    Article  CAS  PubMed  Google Scholar 

  48. Hewett TE, Lindenfeld TN, Riccobene JV, Noyes FR (1999) The effect of neuromuscular training on the incidence of knee injury in female athletes. A prospective study. Am J Sports Med 27(6):699–706

    Article  CAS  PubMed  Google Scholar 

  49. Hewett TE, Stroupe AL, Nance TA, Noyes FR (1996) Plyometric training in female athletes. Decreased impact forces and increased hamstring torques. Am J Sports Med 24(6):765–773

    Article  CAS  PubMed  Google Scholar 

  50. Mandelbaum BR, Silvers HJ, Watanabe DS, Knarr J, Thomas S, Sampson S, Knapp TP, Yingler K, Kirkendall DT, Griffin LY, Garrett WE (2002) ACL prevention strategies in the female athlete and soccer: implementation of a neuromuscular training program to determine its efficacy on the incidence of ACL injury. Amercian Academy of Orthopaedic Surgeons—Specialty Society Day, San Francisco

    Google Scholar 

  51. Mandelbaum BR, Silvers HJ, Watanabe DT, Knarr J, Thomas S, Griffin LY, Kirkendall DT, Garrett WE 2003 Effectiveness of a neuromuscular and proprioceptive training program in preventing the incidence of ACL injuries in female athletes: year two. American Orthopaedic Society of Sports Medicine, New Orleans, LA

    Google Scholar 

  52. Myklebust G, Engebretsen L, Braekken IH, Skjolberg A, Olsen OE, Bahr R (2003) Prevention of anterior cruciate ligament injuries in female team handball players: a prospective intervention study over three seasons. Clin J Sport Med 13(2):71–78

    Article  PubMed  Google Scholar 

  53. Prapavessis H, McNair PJ (1999) Effects of instruction in jumping technique and experience jumping on ground reaction forces. J Orthop Sports Phys Ther 29(6):352–356

    Article  CAS  PubMed  Google Scholar 

  54. Wojtys EM, Huston LJ, Taylor PD, Bastian SD (1996) Neuromuscular adaptations in isokinetic, isotonic, and agility training programs. Am J Sports Med 24(2):187–192

    Article  CAS  PubMed  Google Scholar 

  55. Lephart SM, Pincivero DM, Rozzi SL (1998) Proprioception of the ankle and knee. Sports Med 25(3):149–155

    Article  CAS  PubMed  Google Scholar 

  56. Pincivero DM, Lephart SM, Karunakara RA (1997) Reliability and precision of isokinetic strength and muscular endurance for the quadriceps and hamstrings. Int J Sports Med 18(2):113–117. https://doi.org/10.1055/s-2007-972605

    Article  PubMed  CAS  Google Scholar 

  57. Lephart SM, Riemann BL, Fu FH (2000) Introduction to the sensorimotor system. In: Lephart S, Fu FH (eds) Proprioception and neuromuscular control in joint stability. Human Kinetics, Champaign, IL, pp xxiv–xxiv

    Google Scholar 

  58. Denti M, Monteleone M, Berardi A, Panni AS (1994) Anterior cruciate ligament mechanoreceptors. Histologic studies on lesions and reconstruction. Clin Orthop Relat Res Nov(308):29–32

    Google Scholar 

  59. Duthon VB, Barea C, Abrassart S, Fasel JH, Fritschy D, Menetrey J (2006) Anatomy of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 14(3):204–213

    Article  CAS  PubMed  Google Scholar 

  60. Rozzi SL, Lephart SM, Gear WS, Fu FH (1999) Knee joint laxity and neuromuscular characteristics of male and female soccer and basketball players. Am J Sports Med 27(3):312–319

    Article  CAS  PubMed  Google Scholar 

  61. Boden BP, Dean GS, Feagin JA Jr, Garrett WE Jr (2000) Mechanisms of anterior cruciate ligament injury. Orthopedics 23(6):573–578

    PubMed  CAS  Google Scholar 

  62. McNair PJ, Marshall RN, Matheson JA (1990) Important features associated with acute anterior cruciate ligament injury. N Z Med J 103(901):537–539

    PubMed  CAS  Google Scholar 

  63. Olsen OE, Myklebust G, Engebretsen L, Bahr R (2004) Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med 32(4):1002–1012

    Article  PubMed  Google Scholar 

  64. Nagai T, Sell TC, Abt JP, Lephart SM (2012) Reliability, precision, and gender differences in knee internal/external rotation proprioception measurements. Phys Ther Sport 13(4):233–237. https://doi.org/10.1016/j.ptsp.2011.11.004

    Article  PubMed  Google Scholar 

  65. Nagai T, Sell TC, House AJ, Abt JP, Lephart SM (2013) Knee proprioception and strength are correlated with landing kinematics during a single-leg stop-jump task. J Athl Train 48:31–38

    Article  PubMed  PubMed Central  Google Scholar 

  66. Clark NC, Lephart SM, Abt JP, Lovalekar M, Stone DA, Sell TC (2014) Predictors of knee functional joint stability in uninjured physically active adults. Dissertation, University of Pittsburgh

    Google Scholar 

  67. Keenan KA, Abt JP, Lephart SM, Lovalekar M, Stone DA, Sell TC (2014) Prediction of knee kinematics during a stop jump-cut maneuver using trunk neuromuscular characteristics and kinematics in a healthy, physically active population. Dissertation, University of Pittsburgh

    Google Scholar 

  68. Gokeler A, Benjaminse A, Hewett TE, Lephart SM, Engebretsen L, Ageberg E, Engelhardt M, Arnold MP, Postema K, Otten E, Dijkstra PU (2012) Proprioceptive deficits after ACL injury: are they clinically relevant? Br J Sports Med 46(3):180–192. https://doi.org/10.1136/bjsm.2010.082578

    Article  PubMed  Google Scholar 

  69. Sell T, Tsai Y, Smoliga J, Myers J, Lephart S (2007) Strength, flexibility, and balance characteristics of highly proficient golfers. J Strength Cond Res 21(4):1166–1171

    PubMed  Google Scholar 

  70. Ageberg E, Roberts D, Holmstrom E, Friden T (2005) Balance in single-limb stance in patients with anterior cruciate ligament injury: relation to knee laxity, proprioception, muscle strength, and subjective function. Am J Sports Med 33(10):1527–1535

    Article  PubMed  Google Scholar 

  71. Herrington L, Hatcher J, Hatcher A, McNicholas M (2009) A comparison of Star Excursion Balance Test reach distances between ACL deficient patients and asymptomatic controls. Knee 16(2):149–152. https://doi.org/10.1016/j.knee.2008.10.004

    Article  PubMed  Google Scholar 

  72. Lephart SM, Myers JB, Sell TC, Tsai YS, Bradley JP (2007) Golf injury prevention: an orthopedic approach through physical testing, biomechanics, and training. American Academy of Orthopaedic Surgeons Annual Meeting, San Diego, CA, 14–18 February 2007

    Google Scholar 

  73. Paterno MV, Myer GD, Ford KR, Hewett TE (2004) Neuromuscular training improves single-limb stability in young female athletes. J Orthop Sports Phys Ther 34(6):305–316

    Article  PubMed  Google Scholar 

  74. Rozzi SL, Lephart SM, Sterner R, Kuligowski L (1999) Balance training for persons with functionally unstable ankles. J Orthop Sports Phys Ther 29(8):478–486

    Article  CAS  PubMed  Google Scholar 

  75. Verhagen E, van der Beek A, Twisk J, Bouter L, Bahr R, van Mechelen W (2004) The effect of a proprioceptive balance board training program for the prevention of ankle sprains: a prospective controlled trial. Am J Sports Med 32(6):1385–1393. https://doi.org/10.1177/0363546503262177

    Article  PubMed  Google Scholar 

  76. Abt JP, Sell TC, Laudner KG, McCrory JL, Loucks TL, Berga SL, Lephart SM (2007) Neuromuscular and biomechanical characteristics do not vary across the menstrual cycle. Knee Surg Sports Traumatol Arthrosc 15(7):901–907. https://doi.org/10.1007/s00167-007-0302-3

    Article  PubMed  Google Scholar 

  77. McGuine TA, Keene JS (2006) The effect of a balance training program on the risk of ankle sprains in high school athletes. Am J Sports Med 34(7):1103–1111. https://doi.org/10.1177/0363546505284191

    Article  PubMed  Google Scholar 

  78. McHugh MP, Tyler TF, Tetro DT, Mullaney MJ, Nicholas SJ (2006) Risk factors for noncontact ankle sprains in high school athletes: the role of hip strength and balance ability. Am J Sports Med 34(3):464–470. https://doi.org/10.1177/0363546505280427

    Article  PubMed  Google Scholar 

  79. Paterno MV, Schmitt LC, Ford KR, Rauh MJ, Myer GD, Huang B, Hewett TE (2010) Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med 38(10):1968–1978. https://doi.org/10.1177/0363546510376053

    Article  PubMed  PubMed Central  Google Scholar 

  80. Rozzi SL, Lephart SM, Fu FH (1999) Effects of muscular fatigue on knee joint laxity and neuromuscular characteristics of male and female athletes. J Athl Train 34(2):106–114

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Soderman K, Alfredson H, Pietila T, Werner S (2001) Risk factors for leg injuries in female soccer players: a prospective investigation during one out-door season. Knee Surg Sports Traumatol Arthrosc 9(5):313–321

    Article  CAS  PubMed  Google Scholar 

  82. Tyler TF, McHugh MP, Mirabella MR, Mullaney MJ, Nicholas SJ (2006) Risk factors for noncontact ankle sprains in high school football players: the role of previous ankle sprains and body mass index. Am J Sports Med 34(3):471–475. https://doi.org/10.1177/0363546505280429

    Article  PubMed  Google Scholar 

  83. Shumway-Cook A, Woollacott MH (2001) Motor control: theory and practical applications, 2nd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  84. McCollum G, Leen T (1989) The form and exploration of mechanical stability limits in erect stance. The. J Mot Behav 21(2):225–238

    Article  CAS  PubMed  Google Scholar 

  85. Kandel ER, Schwartz JH, Jessell TM (1991) Principles of neural science, 3rd edn. Appleton & Lange, Norwalk

    Google Scholar 

  86. Riemann BL, Caggiano NA, Lephart SM (1999) Examination of a clinical method of assessing postural control during a functional performance task. J Sport Rehabil 8:171–183

    Article  Google Scholar 

  87. Goldie PA, Bach TM, Evans OM (1989) Force platform measures for evaluating postural control: reliability and validity. Arch Phys Med Rehabil 70(7):510–517

    PubMed  CAS  Google Scholar 

  88. Shultz SJ, Perrin DH, Adams JM, Arnold BL, Gansneder BM, Granata KP (2000) Assessment of neuromuscular response characteristics at the knee following a functional perturbation. J Electromyogr Kinesiol 10(3):159–170

    Article  CAS  PubMed  Google Scholar 

  89. Hoffman M, Schrader J, Koceja D (1999) An investigation of postural control in postoperative anterior cruciate ligament reconstruction patients. J Athl Train 34(2):130–136

    PubMed  PubMed Central  CAS  Google Scholar 

  90. Hoffman MA, Koceja DM (1997) Dynamic balance testing with electrically evoked perturbation: a test of reliability. Arch Phys Med Rehabil 78(3):290–293

    Article  CAS  PubMed  Google Scholar 

  91. Ross S, Guskiewicz KM (2003) Time to stabilization: a method for analyzing dynamic. Athletic. Athl Ther Today 8:37–39

    Google Scholar 

  92. Wikstrom EA, Tillman MD, Smith AN, Borsa PA (2005) A new force-plate technology measure of dynamic postural stability: the dynamic postural stability index. J Athl Train 40(4):305–309

    PubMed  PubMed Central  Google Scholar 

  93. Kinzey SJ, Armstrong CW (1998) The reliability of the star-excursion test in assessing dynamic balance. J Orthop Sports Phys Ther 27(5):356–360

    Article  CAS  PubMed  Google Scholar 

  94. Sell TC, House AJ, Abt JP, Huang HC, Lephart SM (2012) An examination, correlation, and comparison of static and dynamic measures of postural stability in healthy, physically active adults. Phys Ther Sport 13(2):80–86. https://doi.org/10.1016/j.ptsp.2011.06.006

    Article  PubMed  Google Scholar 

  95. Allison KF, Keenan KA, Sell TC, Abt JP, Nagai T, Deluzio J, McGrail M, Lephart SM (2015) Musculoskeletal, biomechanical, and physiological sex difference in the US military. US Army Med Dep J April–June:22–32

    Google Scholar 

  96. Sell TC, Lovalekar MT, Nagai T, Wirt MD, Abt JP, Lephart SM (2017) Gender differences in static and dynamic postural stability of soldiers of the army’s 101st airborne division (air assault). J Sport Rehabil 27(2):1–20. https://doi.org/10.1123/jsr.2016-0131

    Article  Google Scholar 

  97. Sell TC, Myers JB, Youk AO, Fu FH, Lephart SM (2004) Neuromechanical predictors of dynamic stability. Dissertation, University of Pittsburgh

    Google Scholar 

  98. Goldie PA, Evans OM, Bach TM (1992) Steadiness in one-legged stance: development of a reliable force- platform testing procedure. Arch Phys Med Rehabil 73(4):348–354

    Article  CAS  PubMed  Google Scholar 

  99. Dallinga JM, van der Does HT, Benjaminse A, Lemmink KA (2016) Dynamic postural stability differences between male and female players with and without ankle sprain. Phys Ther Sport 17:69–75. https://doi.org/10.1016/j.ptsp.2015.05.002

    Article  PubMed  Google Scholar 

  100. Wikstrom EA, Tillman MD, Kline KJ, Borsa PA (2006) Gender and limb differences in dynamic postural stability during landing. Clin J Sport Med 16(4):311–315

    Article  PubMed  Google Scholar 

  101. Sell TC, Heebner NR, Pletcher ER, Lephart SM (2015) Reliability and hamstring activation during rotational dynamic postural stability in healthy recreational athletes. Paper presented at the 2015 American Physical Therapy Association’s Combined Sections Meeting, Indianapolis, IN, 4–7 February 2015

    Google Scholar 

  102. Basmajian JV (1978) Muscles alive, their functions revealed by electromyography, 4th edn. Williams & Wilkins, Baltimore

    Google Scholar 

  103. Hillstrom HJ, Triolo RJ (1995) EMG theory. In: Craik RL, Oatis CA (eds) Gait analysis: theory and application, 1st edn. Mosby, St. Louis

    Google Scholar 

  104. Winter DA (1990) Biomechanics and motor control of human movement, 2nd edn. Wiley, New York

    Google Scholar 

  105. Besier TF, Lloyd DG, Ackland TR, Cochrane JL (2001) Anticipatory effects on knee joint loading during running and cutting maneuvers. Med Sci Sports Exerc 33(7):1176–1181

    Article  CAS  PubMed  Google Scholar 

  106. Benvenuti F, Stanhope SJ, Thomas SL, Panzer VP, Hallett M (1997) Flexibility of anticipatory postural adjustments revealed by self-paced and reaction-time arm movements. Brain Res 761(1):59–70

    Article  CAS  PubMed  Google Scholar 

  107. Besier TF, Lloyd DG, Ackland TR (2003) Muscle activation strategies at the knee during running and cutting maneuvers. Med Sci Sports Exerc 35(1):119–127

    Article  PubMed  Google Scholar 

  108. Cowling EJ, Steele JR (2001) Is lower limb muscle synchrony during landing affected by gender? Implications for variations in ACL injury rates. J Electromyogr Kinesiol 11(4):263–268

    Article  CAS  PubMed  Google Scholar 

  109. Malinzak RA, Colby SM, Kirkendall DT, Yu B, Garrett WE (2001) A comparison of knee joint motion patterns between men and women in selected athletic tasks. Clin Biomech (Bristol, Avon) 16(5):438–445

    Article  CAS  Google Scholar 

  110. Sell TC, Ferris CM, Abt JP, Tsai YS, Myers JB, Fu FH, Lephart SM (2006) The effect of direction and reaction on the neuromuscular and biomechanical characteristics of the knee during tasks that simulate the noncontact anterior cruciate ligament injury mechanism. Am J Sports Med 34(1):43–54. https://doi.org/10.1177/0363546505278696

    Article  PubMed  Google Scholar 

  111. Sell TC, Ferris CM, Abt JP, Tsai YS, Myers JB, Fu FH, Lephart SM (2007) Predictors of proximal tibia anterior shear force during a vertical stop-jump. J Orthop Res 25(12):1589–1597. https://doi.org/10.1002/jor.20459

    Article  PubMed  Google Scholar 

  112. Fleming BC, Ohlen G, Renstrom PA, Peura GD, Beynnon BD, Badger GJ (2003) The effects of compressive load and knee joint torque on peak anterior cruciate ligament strains. Am J Sports Med 31(5):701–707

    Article  PubMed  Google Scholar 

  113. Renstrom P, Arms SW, Stanwyck TS, Johnson RJ, Pope MH (1986) Strain within the anterior cruciate ligament during hamstring and quadriceps activity. Am J Sports Med 14(1):83–87

    Article  CAS  PubMed  Google Scholar 

  114. Lephart SM, Ferris CM, Riemann BL, Myers JB, Fu FH (2002) Gender differences in strength and lower extremity kinematics during landing. Clin Orthop Relat Res 401:162–169

    Article  Google Scholar 

  115. Myer GD, Ford KR, Barber Foss KD, Liu C, Nick TG, Hewett TE (2009) The relationship of hamstrings and quadriceps strength to anterior cruciate ligament injury in female athletes. Clin J Sport Med 19(1):3–8. https://doi.org/10.1097/JSM.0b013e318190bddb

    Article  PubMed  Google Scholar 

  116. Fleming BC, Renstrom PA, Beynnon BD, Engstrom B, Peura GD, Badger GJ, Johnson RJ (2001) The effect of weightbearing and external loading on anterior cruciate ligament strain. J Biomech 34(2):163–170

    Article  CAS  PubMed  Google Scholar 

  117. Sakane M, Fox RJ, Woo SL, Livesay GA, Li G, Fu FH (1997) In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads. J Orthop Res 15(2):285–293

    Article  CAS  PubMed  Google Scholar 

  118. Feagin JA Jr, Lambert KL, Cunningham RR, Anderson LM, Riegel J, King PH, VanGenderen L (1987) Consideration of the anterior cruciate ligament injury in skiing. Clin Orthop Relat Res Mar(216):13–18

    Google Scholar 

  119. Gabbett TJ (2000) Incidence, site, and nature of injuries in amateur rugby league over three consecutive seasons. Br J Sports Med 34(2):98–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gabbett TJ (2004) Incidence of injury in junior and senior rugby league players. Sports Med 34(12):849–859

    Article  PubMed  Google Scholar 

  121. Molsa J, Airaksinen O, Nasman O, Torstila I (1997) Ice hockey injuries in Finland. A prospective epidemiologic study. Am J Sports Med 25(4):495–499

    Article  CAS  PubMed  Google Scholar 

  122. Pettrone FA, Ricciardelli E (1987) Gymnastic injuries: the Virginia experience 1982-1983. Am J Sports Med 15(1):59–62

    Article  CAS  PubMed  Google Scholar 

  123. Rodacki AL, Fowler NE, Bennett SJ (2002) Vertical jump coordination: fatigue effects. Med Sci Sports Exerc 34(1):105–116

    Article  PubMed  Google Scholar 

  124. Stuart MJ, Smith A (1995) Injuries in junior a ice hockey. A three-year prospective study. Am J Sports Med 23(4):458–461

    Article  CAS  PubMed  Google Scholar 

  125. Liederbach M, Dilgen FE, Rose DJ (2008) Incidence of anterior cruciate ligament injuries among elite ballet and modern dancers: a 5-year prospective study. Am J Sports Med 36(9):1779–1788. https://doi.org/10.1177/0363546508323644

    Article  PubMed  Google Scholar 

  126. Johnston RB 3rd, Howard ME, Cawley PW, Losse GM (1998) Effect of lower extremity muscular fatigue on motor control performance. Med Sci Sports Exerc 30(12):1703–1707

    Article  PubMed  Google Scholar 

  127. Wojtys EM, Wylie BB, Huston LJ (1996) The effects of muscle fatigue on neuromuscular function and anterior tibial translation in healthy knees. Am J Sports Med 24(5):615–621

    Article  CAS  PubMed  Google Scholar 

  128. Huston LJ, Wojtys EM (1996) Neuromuscular performance characteristics in elite female athletes. Am J Sports Med 24(4):427–436

    Article  CAS  PubMed  Google Scholar 

  129. Skinner HB, Wyatt MP, Stone ML, Hodgdon JA, Barrack RL (1986) Exercise-related knee joint laxity. Am J Sports Med 14(1):30–34

    Article  CAS  PubMed  Google Scholar 

  130. Hiemstra LA, Lo IK, Fowler PJ (2001) Effect of fatigue on knee proprioception: implications for dynamic stabilization. J Orthop Sports Phys Ther 31(10):598–605

    Article  CAS  PubMed  Google Scholar 

  131. Lattanzio PJ, Petrella RJ (1998) Knee proprioception: a review of mechanisms, measurements, and implications of muscular fatigue. Orthopedics 21 (4):463–470; discussion 470–461; passim

    Google Scholar 

  132. Lattanzio PJ, Petrella RJ, Sproule JR, Fowler PJ (1997) Effects of fatigue on knee proprioception. Clin J Sport Med 7(1):22–27

    Article  CAS  PubMed  Google Scholar 

  133. Miura K, Ishibashi Y, Tsuda E, Okamura Y, Otsuka H, Toh S (2004) The effect of local and general fatigue on knee proprioception. Arthroscopy 20(4):414–418

    Article  PubMed  Google Scholar 

  134. Kang J, Chaloupka EC, Mastrangelo MA, Biren GB, Robertson RJ (2001) Physiological comparisons among three maximal treadmill exercise protocols in trained and untrained individuals. Eur J Appl Physiol 84(4):291–295

    Article  CAS  PubMed  Google Scholar 

  135. Pollock LM, Wilmore JH, Fox SM (1978) Health and fitness through physical activity. Wiley, New York

    Google Scholar 

  136. Benjaminse A, Habu A, Sell TC, Abt JP, Fu FH, Myers JB, Lephart SM (2008) Fatigue alters lower extremity kinematics during a single-leg stop-jump task. Knee Surg Sports Traumatol Arthrosc 16(4):400–407

    Article  PubMed  Google Scholar 

  137. Allison KF, Lephart SM, Abt JP, Crawford K, Nagle EF, Lovalekar M, Sell TC (2012) The relationship between musculoskeletal strength, physiological characteristics, and knee kinesthesia following fatiguing exercise. Dissertation, University of Pittsburgh

    Google Scholar 

  138. Darnell ME, Abt JP, Lephart SM, Lovalekar M, Nagle EF, Beals K, Sell TC (2015) Effect of carbohydrate-electrolyte feedings on knee biomechanics and postural stability during intermittent high intensity exercise to fatigue. Dissertation, University of Pittsburgh

    Google Scholar 

  139. Gabbett TJ (2016) The training-injury prevention paradox: should athletes be training smarter and harder? Br J Sports Med 50(5):273–280. https://doi.org/10.1136/bjsports-2015-095788

    Article  PubMed  Google Scholar 

  140. Brooks MA, Peterson K, Biese K, Sanfilippo J, Heiderscheit BC, Bell DR (2016) Concussion increases odds of sustaining a lower extremity musculoskeletal injury after return to play among collegiate athletes. Am J Sports Med 44(3):742–747. https://doi.org/10.1177/0363546515622387

    Article  PubMed  Google Scholar 

  141. Gilbert FC, Burdette GT, Joyner AB, Llewellyn TA, Buckley TA (2016) Association between concussion and lower extremity injuries in collegiate athletes. Sports health. https://doi.org/10.1177/1941738116666509

  142. Herman DC, Jones D, Harrison A, Moser M, Tillman S, Farmer K, Pass A, Clugston JR, Hernandez J, Chmielewski TL (2016) Concussion may increase the risk of subsequent lower extremity musculoskeletal injury in collegiate athletes. Sports Med. https://doi.org/10.1007/s40279-016-0607-9

  143. Lynall RC, Mauntel TC, Padua DA, Mihalik JP (2015) Acute lower extremity injury rates increase after concussion in college athletes. Med Sci Sports Exerc 47(12):2487–2492. https://doi.org/10.1249/MSS.0000000000000716

    Article  PubMed  Google Scholar 

  144. Nordström A, Nordström P, Ekstrand J (2014) Sports-related concussion increases the risk of subsequent injury by about 50% in elite male football players. Br J Sports Med 48(19):1447–1450. https://doi.org/10.1136/bjsports-2013-093406

    Article  PubMed  Google Scholar 

  145. Pietrosimone B, Golightly YM, Mihalik JP, Guskiewicz KM (2015) Concussion frequency associates with musculoskeletal injury in retired NFL players. Med Sci Sports Exerc 47(11):2366–2372. https://doi.org/10.1249/MSS.0000000000000684

    Article  PubMed  Google Scholar 

  146. Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD (2016) Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med 44(7):1861–1876. https://doi.org/10.1177/0363546515621554

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy C. Sell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sell, T.C., Lephart, S.M. (2018). Neuromuscular Differences Between Men and Women. In: Noyes, F., Barber-Westin, S. (eds) ACL Injuries in the Female Athlete. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56558-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56558-2_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56557-5

  • Online ISBN: 978-3-662-56558-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics