Skip to main content

Rehabilitation After ACL Reconstruction

  • Chapter
  • First Online:
ACL Injuries in the Female Athlete

Abstract

This chapter reviews the scientific principles and concepts for anterior cruciate ligament reconstruction postoperative rehabilitation programs. The exercises and modalities used in each phase of the programs are presented, along with signs and symptoms to recognize and treat to prevent a complication such as loss of knee motion. Criteria are provided to advance the patient through the programs in a manner that is safe to the healing graft and responsive to the patient’s final activity level goals. Advanced neuromuscular retraining is advocated for patients who desire to return to high-risk activities such as soccer and basketball. Criteria for final release to unrestricted athletics are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faltstrom A, Hagglund M, Magnusson H, Forssblad M, Kvist J (2014) Predictors for additional anterior cruciate ligament reconstruction: data from the Swedish national ACL register. Knee Surg Sports Traumatol Arthrosc 24:885–894. https://doi.org/10.1007/s00167-014-3406-6

    Article  PubMed  Google Scholar 

  2. Hettrich CM, Dunn WR, Reinke EK, Group M, Spindler KP (2013) The rate of subsequent surgery and predictors after anterior cruciate ligament reconstruction: two- and 6-year follow-up results from a multicenter cohort. Am J Sports Med 41(7):1534–1540. https://doi.org/10.1177/0363546513490277

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hui C, Salmon LJ, Kok A, Maeno S, Linklater J, Pinczewski LA (2011) Fifteen-year outcome of endoscopic anterior cruciate ligament reconstruction with patellar tendon autograft for “isolated” anterior cruciate ligament tear. Am J Sports Med 39(1):89–98. https://doi.org/10.1177/0363546510379975

    Article  PubMed  Google Scholar 

  4. Kaeding CC, Pedroza AD, Reinke EK, Huston LJ, Consortium M, Spindler KP (2015) Risk factors and predictors of subsequent ACL injury in either knee after ACL reconstruction: prospective analysis of 2488 primary ACL reconstructions from the MOON cohort. Am J Sports Med 43(7):1583–1590. https://doi.org/10.1177/0363546515578836

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kamien PM, Hydrick JM, Replogle WH, Go LT, Barrett GR (2013) Age, graft size, and Tegner activity level as predictors of failure in anterior cruciate ligament reconstruction with hamstring autograft. Am J Sports Med 41(8):1808–1812. https://doi.org/10.1177/0363546513493896

    Article  PubMed  Google Scholar 

  6. Magnussen RA, Lawrence JT, West RL, Toth AP, Taylor DC, Garrett WE (2012) Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthroscopy 28(4):526–531. https://doi.org/10.1016/j.arthro.2011.11.024

    Article  PubMed  Google Scholar 

  7. Maletis GB, Inacio MC, Funahashi TT (2015) Risk factors associated with revision and contralateral anterior cruciate ligament reconstructions in the Kaiser Permanente ACLR registry. Am J Sports Med 43(3):641–647. https://doi.org/10.1177/0363546514561745

    Article  PubMed  Google Scholar 

  8. Morgan MD, Salmon LJ, Waller A, Roe JP, Pinczewski LA (2016) Fifteen-year survival of endoscopic anterior cruciate ligament reconstruction in patients aged 18 years and younger. Am J Sports Med 44(2):384–392. https://doi.org/10.1177/0363546515623032

    Article  PubMed  Google Scholar 

  9. Park SY, Oh H, Park S, Lee JH, Lee SH, Yoon KH (2013) Factors predicting hamstring tendon autograft diameters and resulting failure rates after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 21(5):1111–1118. https://doi.org/10.1007/s00167-012-2085-4

    Article  PubMed  Google Scholar 

  10. Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE (2014) Incidence of second ACL injuries 2 years after primary ACL reconstruction and return to sport. Am J Sports Med 42(7):1567–1573. https://doi.org/10.1177/0363546514530088

    Article  PubMed  PubMed Central  Google Scholar 

  11. Persson A, Fjeldsgaard K, Gjertsen JE, Kjellsen AB, Engebretsen L, Hole RM, Fevang JM (2014) Increased risk of revision with hamstring tendon grafts compared with patellar tendon grafts after anterior cruciate ligament reconstruction: a study of 12,643 patients from the Norwegian cruciate ligament registry, 2004-2012. Am J Sports Med 42(2):285–291. https://doi.org/10.1177/0363546513511419

    Article  PubMed  Google Scholar 

  12. Pinczewski LA, Lyman J, Salmon LJ, Russell VJ, Roe J, Linklater J (2007) A 10-year comparison of anterior cruciate ligament reconstructions with hamstring tendon and patellar tendon autograft: a controlled, prospective trial. Am J Sports Med 35(4):564–574

    Article  PubMed  Google Scholar 

  13. Ponce BA, Cain EL Jr, Pflugner R, Fleisig GS, Young BL, Boohaker HA, Swain TA, Andrews JR, Dugas JR (2016) Risk factors for revision anterior cruciate ligament reconstruction. J Knee Surg 29(4):329–336. https://doi.org/10.1055/s-0035-1554925

    Article  PubMed  Google Scholar 

  14. Salmon LJ, Russell VJ, Refshauge K, Kader D, Connolly C, Linklater J, Pinczewski LA (2006) Long-term outcome of endoscopic anterior cruciate ligament reconstruction with patellar tendon autograft: minimum 13-year review. Am J Sports Med 34(5):721–732

    Article  PubMed  Google Scholar 

  15. Schlumberger M, Schuster P, Schulz M, Immendorfer M, Mayer P, Bartholoma J, Richter J (2015) Traumatic graft rupture after primary and revision anterior cruciate ligament reconstruction: retrospective analysis of incidence and risk factors in 2915 cases. Knee Surg Sports Traumatol Arthrosc 25:1535–1541. https://doi.org/10.1007/s00167-015-3699-0

    Article  PubMed  Google Scholar 

  16. Shelbourne KD, Gray T, Haro M (2009) Incidence of subsequent injury to either knee within 5 years after anterior cruciate ligament reconstruction with patellar tendon autograft. Am J Sports Med 37(2):246–251

    Article  PubMed  Google Scholar 

  17. Thompson S, Salmon L, Waller A, Linklater J, Roe J, Pinczewski L (2015) Twenty-year outcomes of a longitudinal prospective evaluation of isolated endoscopic anterior cruciate ligament reconstruction with patellar tendon autografts. Am J Sports Med 43(9):2164–2174. https://doi.org/10.1177/0363546515591263

    Article  PubMed  Google Scholar 

  18. Webster KE, Feller JA (2016) Exploring the high reinjury rate in younger patients undergoing anterior cruciate ligament reconstruction. Am J Sports Med 44(11):2827–2832. https://doi.org/10.1177/0363546516651845

    Article  PubMed  Google Scholar 

  19. Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD (2016) Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med 44(7):1861–1876. https://doi.org/10.1177/0363546515621554

    Article  PubMed  PubMed Central  Google Scholar 

  20. Barber-Westin SD, Noyes FR (2011) Factors used to determine return to unrestricted sports activities after anterior cruciate ligament reconstruction. Arthroscopy 27(12):1697–1705. https://doi.org/10.1016/j.arthro.2011.09.009

    Article  PubMed  Google Scholar 

  21. Barber-Westin SD, Noyes FR (2017) Scientific basis of rehabilitation after anterior cruciate ligament autogenous reconstruction. In: Noyes FR, Barber-Westin SD (eds) Noyes’ knee disorders: surgery, rehabilitation, clinical outcomes, 2nd edn. Elsevier, Philadelphia, pp 268–292

    Chapter  Google Scholar 

  22. Barber-Westin SD, Noyes FR (1993) The effect of rehabilitation and return to activity on anterior-posterior knee displacements after anterior cruciate ligament reconstruction. Am J Sports Med 21(2):264–270

    Article  CAS  PubMed  Google Scholar 

  23. Barber-Westin SD, Noyes FR, Heckmann TP, Shaffer BL (1999) The effect of exercise and rehabilitation on anterior-posterior knee displacements after anterior cruciate ligament autograft reconstruction. Am J Sports Med 27(1):84–93

    Article  CAS  PubMed  Google Scholar 

  24. Noyes FR, Barber-Westin SD (2017) Anterior cruciate ligament primary reconstruction: diagnosis, operative techniques, and clinical outcomes. In: Noyes FR, Barber-Westin SD (eds) Noyes’ knee disorders: surgery, rehabilitation, clinical outcomes, 2nd edn. Elsevier, Philadelphia, pp 137–220

    Chapter  Google Scholar 

  25. Noyes FR, Barber-Westin SD (2017) Anterior cruciate ligament revision reconstruction: graft options and clinical outcomes. In: Noyes FR, Barber-Westin SD (eds) Noyes’ knee disorders: surgery, rehabilitation, clinical outcomes, 2nd edn. Elsevier, Philadelphia, pp 221–257

    Chapter  Google Scholar 

  26. Noyes FR, Mangine RE, Barber S (1987) Early knee motion after open and arthroscopic anterior cruciate ligament reconstruction. Am J Sports Med 15(2):149–160

    Article  CAS  PubMed  Google Scholar 

  27. Noyes FR, Berrios-Torres S, Barber-Westin SD, Heckmann TP (2000) Prevention of permanent arthrofibrosis after anterior cruciate ligament reconstruction alone or combined with associated procedures: a prospective study in 443 knees. Knee Surg Sports Traumatol Arthrosc 8(4):196–206

    Article  CAS  PubMed  Google Scholar 

  28. Heckmann TP, Noyes FR, Barber-Westin SD (2017) Rehabilitation of primary and revision anterior cruciate ligament reconstruction. In: Noyes FR, Barber-Westin SD (eds) Noyes’ knee disorders: surgery, rehabilitation, clinical outcomes, 2nd edn. Elsevier, Philadelphia, pp 293–329

    Chapter  Google Scholar 

  29. Ingersoll CD, Grindstaff TL, Pietrosimone BG, Hart JM (2008) Neuromuscular consequences of anterior cruciate ligament injury. Clin Sports Med 27(3):383–404., vii. https://doi.org/10.1016/j.csm.2008.03.004

    Article  PubMed  Google Scholar 

  30. Schultz RA, Miller DC, Kerr CS, Micheli L (1984) Mechanoreceptors in human cruciate ligaments. A histological study. J Bone Joint Surg Am 66(7):1072–1076

    Article  CAS  PubMed  Google Scholar 

  31. Schutte MJ, Dabezies EJ, Zimny ML, Happel LT (1987) Neural anatomy of the human anterior cruciate ligament. J Bone Joint Surg 69A(2):243–247

    Article  Google Scholar 

  32. Beard DJ, Kyberd PJ, Fergusson CM, Dodd CAF (1993) Proprioception after rupture of the anterior cruciate ligament. An objective indication of the need for surgery? J Bone Joint Surg 75B(2):311–315

    Article  Google Scholar 

  33. Wojtys EM, Huston LJ (1994) Neuromuscular performance in normal and anterior cruciate ligament-deficient lower extremities. Am J Sports Med 22(1):89–104

    Article  CAS  PubMed  Google Scholar 

  34. Gao B, Zheng NN (2010) Alterations in three-dimensional joint kinematics of anterior cruciate ligament-deficient and -reconstructed knees during walking. Clin Biomech (Bristol, Avon) 25(3):222–229. https://doi.org/10.1016/j.clinbiomech.2009.11.006

    Article  Google Scholar 

  35. Madhavan S, Shields RK (2011) Neuromuscular responses in individuals with anterior cruciate ligament repair. Clin Neurophysiol 122(5):997–1004. https://doi.org/10.1016/j.clinph.2010.09.002

    Article  PubMed  Google Scholar 

  36. Orishimo KF, Kremenic IJ, Mullaney MJ, McHugh MP, Nicholas SJ (2010) Adaptations in single-leg hop biomechanics following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 18(11):1587–1593. https://doi.org/10.1007/s00167-010-1185-2

    Article  PubMed  Google Scholar 

  37. Webster KA, Gribble PA (2010) Time to stabilization of anterior cruciate ligament-reconstructed versus healthy knees in National Collegiate Athletic Association Division I female athletes. J Athl Train 45(6):580–585. https://doi.org/10.4085/1062-6050-45.6.580

    Article  PubMed  PubMed Central  Google Scholar 

  38. Risberg MA, Holm I (2009) The long-term effect of 2 postoperative rehabilitation programs after anterior cruciate ligament reconstruction: a randomized controlled clinical trial with 2 years of follow-up. Am J Sports Med 37(10):1958–1966. https://doi.org/10.1177/0363546509335196

    Article  PubMed  Google Scholar 

  39. Wilk KE, Hooks TR (2017) Neuromuscular training after anterior cruciate ligament reconstruction. In: Noyes FR, Barber-Westin SD (eds) Noyes’ knee disorders: surgery, rehabilitation, clinical outcomes. Elsevier, Philadelphia, pp 330–342

    Chapter  Google Scholar 

  40. Noyes FR, Barber-Westin SD (2017) Prevention and treatment of knee arthrofibrosis. In: Noyes FR, Barber-Westin SD (eds) Noyes’ knee disorders: surgery, rehabilitation, clinical outcomes, 2nd edn. Elsevier, Philadelphia, pp 1059–1102

    Chapter  Google Scholar 

  41. Barber-Westin SD, Noyes FR (2011) Objective criteria for return to athletics after anterior cruciate ligament reconstruction and subsequent reinjury rates: a systematic review. Phys Sportsmed 39(3):100–110. https://doi.org/10.3810/psm.2011.09.1926

    Article  PubMed  Google Scholar 

  42. Daniel DM, Malcom LL, Losse G, Stone ML, Sachs R, Burks R (1985) Instrumented measurement of anterior laxity of the knee. J Bone Joint Surg Am 67(5):720–726

    Article  CAS  PubMed  Google Scholar 

  43. Wroble RR, Van Ginkel LA, Grood ES, Noyes FR, Shaffer BL (1990) Repeatability of the KT-1000 arthrometer in a normal population. Am J Sports Med 18(4):396–399

    Article  CAS  PubMed  Google Scholar 

  44. Beynnon BD, Johnson RJ, Fleming BC, Kannus P, Kaplan M, Samani J, Renstr m P (2002) Anterior cruciate ligament replacement: comparison of bone-patellar tendon-bone grafts with two-strand hamstring grafts: a prospective, randomized study. J Bone Joint Surg Am 84-A(9):1503–1513

    Article  PubMed  Google Scholar 

  45. Choi NH, Lee JH, Son KM, Victoroff BN (2010) Tibial tunnel widening after anterior cruciate ligament reconstructions with hamstring tendons using Rigidfix femoral fixation and Intrafix tibial fixation. Knee Surg Sports Traumatol Arthrosc 18(1):92–97. https://doi.org/10.1007/s00167-009-0951-5

    Article  PubMed  Google Scholar 

  46. Hartigan EH, Axe MJ, Snyder-Mackler L (2010) Time line for noncopers to pass return-to-sports criteria after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 40(3):141–154. https://doi.org/10.2519/jospt.2010.3168

    Article  PubMed  PubMed Central  Google Scholar 

  47. Henriksson M, Rockborn P, Good L (2002) Range of motion training in brace vs. plaster immobilization after anterior cruciate ligament reconstruction: a prospective randomized comparison with a 2-year follow-up. Scand J Med Sci Sports 12(2):73–80

    Article  CAS  PubMed  Google Scholar 

  48. Isberg J, Faxen E, Brandsson S, Eriksson BI, Karrholm J, Karlsson J (2006) Early active extension after anterior cruciate ligament reconstruction does not result in increased laxity of the knee. Knee Surg Sports Traumatol Arthrosc 14(11):1108–1115. https://doi.org/10.1007/s00167-006-0138-2

    Article  PubMed  Google Scholar 

  49. Kvist J (2004) Rehabilitation following anterior cruciate ligament injury: current recommendations for sports participation. Sports Med 34(4):269–280

    Article  PubMed  Google Scholar 

  50. Landes S, Nyland J, Elmlinger B, Tillett E, Caborn D (2010) Knee flexor strength after ACL reconstruction: comparison between hamstring autograft, tibialis anterior allograft, and non-injured controls. Knee Surg Sports Traumatol Arthrosc 18(3):317–324. https://doi.org/10.1007/s00167-009-0931-9

    Article  PubMed  Google Scholar 

  51. Moller E, Forssblad M, Hansson L, Wange P, Weidenhielm L (2001) Bracing versus nonbracing in rehabilitation after anterior cruciate ligament reconstruction: a randomized prospective study with 2-year follow-up. Knee Surg Sports Traumatol Arthrosc 9(2):102–108

    Article  CAS  PubMed  Google Scholar 

  52. Poehling GG, Curl WW, Lee CA, Ginn TA, Rushing JT, Naughton MJ, Holden MB, Martin DF, Smith BP (2005) Analysis of outcomes of anterior cruciate ligament repair with 5-year follow-up: allograft versus autograft. Arthroscopy 21(7):774–785

    Article  PubMed  Google Scholar 

  53. Sajovic M, Vengust V, Komadina R, Tavcar R, Skaza K (2006) A prospective, randomized comparison of semitendinosus and gracilis tendon versus patellar tendon autografts for anterior cruciate ligament reconstruction: five-year follow-up. Am J Sports Med 34(12):1933–1940

    Article  PubMed  Google Scholar 

  54. Zaffagnini S, Bruni D, Marcheggiani Muccioli GM, Bonanzinga T, Lopomo N, Bignozzi S, Marcacci M (2011) Single-bundle patellar tendon versus non-anatomical double-bundle hamstrings ACL reconstruction: a prospective randomized study at 8-year minimum follow-up. Knee Surg Sports Traumatol Arthrosc 19(3):390–397. https://doi.org/10.1007/s00167-010-1225-y

    Article  PubMed  Google Scholar 

  55. Stark T, Walker B, Phillips JK, Fejer R, Beck R (2011) Hand-held dynamometry correlation with the gold standard isokinetic dynamometry: a systematic review. PM R 3(5):472–479. https://doi.org/10.1016/j.pmrj.2010.10.025

    Article  PubMed  Google Scholar 

  56. Toonstra J, Mattacola CG (2013) Test–retest reliability and validity of isometric knee-flexion and -extension measurement using 3 methods of assessing muscle strength. J Sport Rehabil (7)

    Google Scholar 

  57. Whiteley R, Jacobsen P, Prior S, Skazalski C, Otten R, Johnson A (2012) Correlation of isokinetic and novel hand-held dynamometry measures of knee flexion and extension strength testing. J Sci Med Sport 15(5):444–450. https://doi.org/10.1016/j.jsams.2012.01.003

    Article  PubMed  Google Scholar 

  58. Kraemer WJ, Patton JF, Gordon SE, Harman EA, Deschenes MR, Reynolds K, Newton RU, Triplett NT, Dziados JE (1995) Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol 78(3):976–989

    Article  CAS  PubMed  Google Scholar 

  59. Reiman MP, Manske RC (2009) Functional testing in human performance. Human Kinetics, Champaign

    Google Scholar 

  60. Barber SD, Noyes FR, Mangine RE, McCloskey JW, Hartman W (1990) Quantitative assessment of functional limitations in normal and anterior cruciate ligament-deficient knees. Clin Orthop Relat Res 255:204–214

    Google Scholar 

  61. Barrett GR, Luber K, Replogle WH, Manley JL (2010) Allograft anterior cruciate ligament reconstruction in the young, active patient: tegner activity level and failure rate. Arthroscopy 26(12):1593–1601. https://doi.org/10.1016/j.arthro.2010.05.014

    Article  PubMed  Google Scholar 

  62. Logerstedt D, Grindem H, Lynch A, Eitzen I, Engebretsen L, Risberg MA, Axe MJ, Snyder-Mackler L (2012) Single-legged hop tests as predictors of self-reported knee function after anterior cruciate ligament reconstruction: the Delaware-Oslo ACL cohort study. Am J Sports Med 40(10):2348–2356. https://doi.org/10.1177/0363546512457551

    Article  PubMed  PubMed Central  Google Scholar 

  63. Logerstedt D, Di Stasi S, Grindem H, Lynch A, Eitzen I, Engebretsen L, Risberg MA, Axe MJ, Snyder-Mackler L (2014) Self-reported knee function can identify athletes who fail return-to-activity criteria up to 1 year after anterior cruciate ligament reconstruction: a Delaware-Oslo ACL cohort study. J Orthop Sports Phys Ther 44(12):914–923. https://doi.org/10.2519/jospt.2014.4852

    Article  PubMed  PubMed Central  Google Scholar 

  64. Noyes FR, Barber SD, Mangine RE (1991) Abnormal lower limb symmetry determined by function hop tests after anterior cruciate ligament rupture. Am J Sports Med 19(5):513–518

    Article  CAS  PubMed  Google Scholar 

  65. Nilstad A, Andersen TE, Kristianslund E, Bahr R, Myklebust G, Steffen K, Krosshaug T (2014) Physiotherapists can identify female football players with high knee valgus angles during vertical drop jumps using real-time observational screening. J Orthop Sports Phys Ther 44(5):358–365. https://doi.org/10.2519/jospt.2014.4969

    Article  PubMed  Google Scholar 

  66. Noyes FR, Barber-Westin SD, Fleckenstein C, Walsh C, West J (2005) The drop-jump screening test: difference in lower limb control by gender and effect of neuromuscular training in female athletes. Am J Sports Med 33(2):197–207

    Article  PubMed  Google Scholar 

  67. Pollard CD, Sigward SM, Powers CM (2010) Limited hip and knee flexion during landing is associated with increased frontal plane knee motion and moments. Clin Biomech (Bristol, Avon) 25(2):142–146. https://doi.org/10.1016/j.clinbiomech.2009.10.005

    Article  Google Scholar 

  68. Sigward SM, Havens KL, Powers CM (2011) Knee separation distance and lower extremity kinematics during a drop land: implications for clinical screening. J Athl Train 46(5):471–475

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ageberg E, Bennell KL, Hunt MA, Simic M, Roos EM, Creaby MW (2010) Validity and inter-rater reliability of medio-lateral knee motion observed during a single-limb mini squat. BMC Musculoskelet Disord 11:265. https://doi.org/10.1186/1471-2474-11-265

    Article  PubMed  PubMed Central  Google Scholar 

  70. Claiborne TL, Armstrong CW, Gandhi V, Pincivero DM (2006) Relationship between hip and knee strength and knee valgus during a single leg squat. J Appl Biomech 22(1):41–50

    Article  PubMed  Google Scholar 

  71. Ireland ML (2002) The female ACL: why is it more prone to injury? Orthop Clin North Am 33(4):637–651

    Article  PubMed  Google Scholar 

  72. Ireland ML, Durbin T, Bolgla LA (2012) Gender differences in core strength and lower extremity function during the single-leg squat test. In: Noyes FR, Barber-Westin SD (eds) ACL injuries in the female athlete: causes, impacts, and conditioning programs. Springer-Verlag, Berlin, Heidelberg, pp 203–219

    Chapter  Google Scholar 

  73. Cortes N, Onate J, Van Lunen B (2011) Pivot task increases knee frontal plane loading compared with sidestep and drop-jump. J Sports Sci 29(1):83–92. https://doi.org/10.1080/02640414.2010.523087

    Article  PubMed  PubMed Central  Google Scholar 

  74. Jones PA, Herrington LC, Munro AG, Graham-Smith P (2014) Is there a relationship between landing, cutting, and pivoting tasks in terms of the characteristics of dynamic valgus? Am J Sports Med 42(9):2095–2102. https://doi.org/10.1177/0363546514539446

    Article  PubMed  Google Scholar 

  75. Nagano Y, Ida H, Akai M, Fukubayashi T (2009) Biomechanical characteristics of the knee joint in female athletes during tasks associated with anterior cruciate ligament injury. Knee 16(2):153–158. https://doi.org/10.1016/j.knee.2008.10.012

    Article  PubMed  Google Scholar 

  76. Pollard CD, Sigward SM, Powers CM (2007) Gender differences in hip joint kinematics and kinetics during side-step cutting maneuver. Clin J Sport Med 17(1):38–42. https://doi.org/10.1097/JSM.0b013e3180305de8

    Article  PubMed  Google Scholar 

  77. Ramsbottom R, Brewer J, Williams C (1988) A progressive shuttle run test to estimate maximal oxygen uptake. Br J Sports Med 22(4):141–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Okada T, Huxel KC, Nesser TW (2011) Relationship between core stability, functional movement, and performance. J Strength Cond Res 25(1):252–261. https://doi.org/10.1519/JSC.0b013e3181b22b3e

    Article  PubMed  Google Scholar 

  79. Noyes FR, Barber-Westin SD (2007) Posterolateral knee reconstruction with an anatomical bone-patellar tendon-bone reconstruction of the fibular collateral ligament. Am J Sports Med 35(2):259–273. https://doi.org/10.1177/0363546506293704

    Article  PubMed  Google Scholar 

  80. Noyes FR, Barber-Westin S (2005) Posterior cruciate ligament replacement with a two-strand quadriceps tendon-patellar bone autograft and a tibial inlay technique. J Bone Joint Surg Am 87(6):1241–1252. https://doi.org/10.2106/JBJS.D.02272

    Article  PubMed  Google Scholar 

  81. Heckmann TP, Barber-Westin SD, Noyes FR (2006) Meniscal repair and transplantation: indications, techniques, rehabilitation, and clinical outcome. J Orthop Sports Phys Ther 36(10):795–814

    Article  PubMed  Google Scholar 

  82. Heckmann TP, Noyes FR, Barber-Westin SD (2017) Rehabilitation of meniscus repair and transplantation procedures. In: Noyes FR, Barber-Westin SD (eds) Noyes’ knee disorders: surgery, rehabilitation, clinical outcomes, 2nd edn. Elsevier, Philadelphia, pp 760–771

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy P. Heckmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heckmann, T.P., Noyes, F.R., Barber-Westin, S. (2018). Rehabilitation After ACL Reconstruction. In: Noyes, F., Barber-Westin, S. (eds) ACL Injuries in the Female Athlete. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56558-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56558-2_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56557-5

  • Online ISBN: 978-3-662-56558-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics