Advertisement

Ideal Seed Point Location Approximation for GrowCut Interactive Image Segmentation

  • Mario Amrehn
  • Maddalena Strumia
  • Stefan Steidl
  • Tim Horz
  • Markus Kowarschik
  • Andreas Maier
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Zusammenfassung

The C-arm CT X-ray acquisition process is a common modality in medical imaging. After image formation, anatomical structures can be extracted via segmentation. Interactive segmentation methods bear the advantage of a dynamically adjustable trade-off between time and achieved segmentation quality for the object of interest w.r.t. fully automated approaches. The segmentation’s quality can be measured in terms of the Dice coefficient with the ground truth segmentation image. A user’s interaction traditionally consist of drawing pictorial hints on an overlay image to the acquired image data via a graphical user interface (UI). The quality of a segmentation utilizing a set of drawn seeds varies depending on the location of the seed points in the image. In this paper, we (1) investigate the influence of seed point location on segmentation quality and (2) propose an approximation framework for ideal seed placements utilizing an extension of the well established GrowCut segmentation algorithm and (3) introduce a user interface for the utilization of the suggested seed point locations. An extensive evaluation of the predictive power of seed importance is conducted from hepatic lesion input images. As a result, our approach suggests seed points with a median of 72.5% of the ideal seed points’ associated Dice scores, which is an increase of 8.4% points to sampling the seed location at random.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Lewandowski RJ, Geschwind JF, Liapi E, et al. Transcatheter intraarterial therapies: rationale and overview. Radiology. 2011; p. 641–657.Google Scholar
  2. 2.
    Moschidis E, Graham J. A systematic performance evaluation of interactive image segmentation methods based on simulated user interaction. Proc ISBI. 2010; p. 928–931.Google Scholar
  3. 3.
    Vezhnevets V, Konouchine V. GrowCut: interactive multi-label ND image segmentation by cellular automata. Graphicon. 2005; p. 150–156.Google Scholar
  4. 4.
    Amrehn MP, Glasbrenner J, Steidl S, et al. Comparative evaluation of interactive segmentation approaches. Procs BVM. 2016; p. 68–73.Google Scholar
  5. 5.
    Amrehn MP, Steidl S, Kortekaas R, et al.. Usability evaluation of interactive image segmentation systems; 2018.Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2018

Authors and Affiliations

  • Mario Amrehn
    • 1
  • Maddalena Strumia
    • 2
  • Stefan Steidl
    • 1
  • Tim Horz
    • 2
  • Markus Kowarschik
    • 2
  • Andreas Maier
    • 1
    • 3
  1. 1.Pattern Recognition LabFriedrich-Alexander University Erlangen-Nürnberg (FAU)ErlangenDeutschland
  2. 2.Siemens Healthcare GmbHForchheimDeutschland
  3. 3.Erlangen Graduate School in Advanced Optical Technologies (SAOT)ErlangenDeutschland

Personalised recommendations