Employing Spatial Indexing for Flexibility and Scalability in Brain Biopsy Planning

Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Zusammenfassung

Planning of deep brain tumor biopsy is a time intensive task and the result highly dependent on tumor position and patient individual anatomy. The decision on the best needle trajectory is generally based on expert knowledge on optimal entry points and angles as well as trajectory length and rigid rules in respect to avoidance of and safety margins to risk structures. The increasing availability of more detailed data on brain anatomy further increases the complexity of the planning task. However, current computer supported planning systems generally work with fixed rules and a limited set of structures at risk. We propose BrainXPlore, a visual analytics based planning tool allowing neurosurgeon to interactively explore and refine the space of possible trajectories in the context of different quality measures and to define custom rules. To ensure interactivity and performance even for a high number of anatomical structures, we employ a spatial index allowing to access distance information for trajectories in real time. We evaluated BrainXPlore on real brain biopsy planning tasks and conclude that our system can decrease the time needed for biopsy planning and aid novice users in their decision-making process.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Zombori G, Rodionov R, Nowell M, et al. A computer assisted planning system for the placement of sEEG electrodes in the treatment of epilepsy. Proc IPCAI. 2014; p. 118–127.Google Scholar
  2. 2.
    Essert C, Haegelen C, Jannin P. Automatic computation of electrodes trajectory for deep brain stimulation. Proc MIAR. 2010; p. 149–158.Google Scholar
  3. 3.
    Zelmann R, Bériault S, Mok K, et al. Automatic optimization of depth electrode trajectory planning. In: Workshop on Clinical Image-Based Procedures. Springer; 2013. p. 99–107.Google Scholar
  4. 4.
    Gao C, Chen L, Hou B, et al. Precise and semi-automatic puncture trajectory planning in craniofacial surgery: A prototype study. Proc BMEI. 2014; p. 617–622.Google Scholar
  5. 5.
    Herghelegiu P, Manta V, Perin R, et al. Biopsy planner: visual analysis for needle pathway planning in deep seated brain tumor biopsy. Comput Graph Forum. 2012;31(3):1085–1094. Presented at EuroVis 2012.Google Scholar
  6. 6.
    Amunts K. Human Brain Project: Aufbau eines multimodalen Gehirnatlas. Dtsch Arztebl Int. 2017;114(37):[26].Google Scholar
  7. 7.
    Orringer DA, Golby A, Jolesz F. Neuronavigation in the surgical management of brain tumors: current and future trends. Exp Rev Med Dev. 2012;9(5):491–500.Google Scholar
  8. 8.
    Bruckner S, Šoltészová V, Gröller E, et al. BrainGazer: visual queries for neurobiology research. IEEE Trans Vis Comput Graph. 2009 Nov;15(6):1497–1504.Google Scholar
  9. 9.
    Reuter M, Schmansky NJ, Rosas HD, et al. Within-Subject template estimation for unbiased longitudinal image analysis. NeuroImage. 2012;61(4):1402–1418.Google Scholar
  10. 10.
    Beyer J, Hadwiger M, Wolfsberger S, et al. High-Quality multimodal volume rendering for preoperative planning of neurosurgical interventions. Trans Vis Comput Graph. 2007;13(6):1696–1703.Google Scholar
  11. 11.
    Mastmeyer A, Fortmeier D, Handels H. Evaluation of direct haptic 4D volume rendering of partially segmented data for liver puncture simulation. Sci Report. 2017;7(1):671.Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2018

Authors and Affiliations

  • Lukas Pezenka
    • 1
  • Stefan Wolfsberger
    • 2
  • Katja Bühler
    • 1
  1. 1.VRVis Center for Virtual Reality and VisualizationViennaÖsterreich
  2. 2.Medical University of ViennaViennaÖsterreich

Personalised recommendations