Towards In-Vivo X-Ray Nanoscopy

The Effect of Motion on Image Quality
  • Leonid Mill
  • Bastian Bier
  • Christopher Syben
  • Lasse Kling
  • Anika Klingberg
  • Silke Christiansen
  • Georg Schett
  • Andreas Maier
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Zusammenfassung

Novel X-Ray Microscopy (XRM) systems allow to study the internal structure of a specimen on nanoscale. A possible use of this non-destructive technology is motivated in the medical research area. In-Vivo investigation of medication over a period of time and its effects on perfusion and bony structure might lead to a better understanding of drug mechanisms and diseases like Osteoporosis and could lead to new approaches to their treatment. The first step towards in-vivo XRM imaging is to investigate the suitability of recent XRM systems for this task and subsequently to determine the system parameters. In this context, the impact of mice motion on the image quality is studied in this work. This paper aims to simulate the effects of breathing motion and muscle relaxation of the mice on the reconstructed images, which already effects the projection images. We therefore assume a mouse’s respiration motion pattern, which happens four time during a single projection acquisitions, and the muscle relaxation movement due to anesthesia and simulate its impacts on image quality. Additionally, we show that a frame rate of at least 16 fps is needed to capture in-vivo movements in order to apply state-of-the-art motion correction methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Berger M, Xia Y, Aichinger W, et al. Motion compensation for cone-beam CT using fourier consistency conditions. Phys Med Biol. 2017;62(17):7181.Google Scholar
  2. 2.
    Bier B, Aichert A, Felsner L, et al. Epipolar consistency conditions for motion correction in weight-bearing imaging. Springer; 2017.Google Scholar
  3. 3.
    Bier B, Unberath M, Geimer T, et al.; Springer. Motion compensation using range imaging in C-Arm cone-beam CT. Proc MIUA. 2017; p. 561–570.Google Scholar
  4. 4.
    Maier A, Hofmann HG, Berger M, et al. CONRAD: a software framework for conebeam imaging in radiology. Med Phys. 2013;40(11):111914–1–8.Google Scholar
  5. 5.
    Kak AC, Slaney M. Principles of computerized tomographic imaging. Piscataway, NJ, United States: IEEE Service Center; 1988.Google Scholar
  6. 6.
    Parker DL. Optimal short scan convolution reconstruction for fanbeam CT. Med Phys. 1982;9(2):254–257.Google Scholar
  7. 7.
    Rohkohl C, Lauritsch G, Nöttling A, et al. C-Arm CT: Reconstruction of dynamic high contrast objects applied to the coronary sinus. Proc IEEE NSS/MICR. 2008; p. no pagination.Google Scholar
  8. 8.
    Zeng GL. Medical image reconstruction: a conceptual tutorial. Springer; 2010.Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2018

Authors and Affiliations

  • Leonid Mill
    • 1
  • Bastian Bier
    • 1
  • Christopher Syben
    • 1
  • Lasse Kling
    • 2
  • Anika Klingberg
    • 3
  • Silke Christiansen
    • 4
    • 5
  • Georg Schett
    • 3
  • Andreas Maier
    • 1
  1. 1.Pattern Recognition LabFriedrich-Alexander-University Erlangen-NurembergErlangenDeutschland
  2. 2.Max Planck Institute for the Science of LightErlangenDeutschland
  3. 3.Institute of clinical ImmunologyUniversity Hospital ErlangenErlangenDeutschland
  4. 4.Freie Universität BerlinBerlinDeutschland
  5. 5.Helmholtz Zentrum Berlin für Materialien und EnergieBerlinDeutschland

Personalised recommendations