Comparison of Self-similarity Measures for Multi-modal Non-rigid Registration of 3D-PLI Brain Images

Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Zusammenfassung

We introduce self-similarity measures in a spline-based nonrigid registration method. We applied our method to register multimodal 3D polarized light imaging and blockface image data of human and rat brain sections. Quantitative evaluations demonstrate that using self-similarity measures increases the accuracy and robustness compared to a traditional mutual information measure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Axer M, Gräßel D, Kleiner M, et al. High-resolution fiber tract reconstruction in the human brain by means of three-dimensional polarized light imaging. Front Neuroinf. 2011;5(34).Google Scholar
  2. 2.
    Ali S, Rohr K, Axer M, et al. Elastic registration of high-resolution 3D PLI data of the human brain. Proc ISBI. 2017; p. 1151–1155.Google Scholar
  3. 3.
    Palm C, Axer M, Gräßel D, et al. Towards ultra-high resolution fibre tract mapping of the human brain - registration of polarised light images and reorientation of fibre vectors. Frontiers Hum Neurosci. 2010;4(9).Google Scholar
  4. 4.
    Schubert N, Axer M, Schober M, et al. 3D Reconstructed Cyto-, Muscarinic M2 Receptor, and Fiber Architecture of the Rat Brain Registered to the Waxholm Space Atlas. Front Neuroanatom. 2016;10(51).Google Scholar
  5. 5.
    Heinrich MP, Jenkinson M, Bhushan M, et al. MIND: modality independent neighbourhood descriptor for multi-modal deformable registration. Medical Image Analysis. 2012;16(7):1423–1435.Google Scholar
  6. 6.
    Drulea M, Nedevschi S. Motion Estimation Using the Correlation Transform. IEEE Trans Image Process. 2013;22(8):3260–3270.Google Scholar
  7. 7.
    Ali S, Daul C, Galbrun E, et al. Illumination invariant optical flow using neighborhood descriptors. Comput Vis Image Underst. 2016;145:95–110.Google Scholar
  8. 8.
    Buades A, Coll B, Morel JM. A Non-Local Algorithm for Image Denoising. Proc IEEE CVPR. 2005; p. 60–65.Google Scholar
  9. 9.
    Shechtman E, Irani M. Matching local self-similarities across images and videos. Proc IEEE CVPR. 2007; p. 1–8.Google Scholar
  10. 10.
    Biesdorf A, Wörz S, Kaiser HJ, et al. Hybrid Spline-Based Multimodal Registration using Local Measures for Joint Entropy and Mutual Information. In: Proc MICCAI; 2009. p. 607–615.Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2018

Authors and Affiliations

  1. 1.Department of Bioinformatics and Functional Genomics, Biomedical Computer Vision Group, BIOQUANT, IPMB, DKFZUniversity of HeidelbergHeidelbergDeutschland
  2. 2.Institute of Neuroscience and Medicine 1Research Centre JülichJülichDeutschland

Personalised recommendations