Skip to main content

In Situ Generated Turbostratic 2D Graphite: A New Way to Obtain High-Performance Self-Lubricating Iron-Based Composites

  • Chapter
  • First Online:
Self-Lubricating Composites

Abstract

The production of self-lubricating composites containing second phase particles is one of the most promising choices for controlling friction and wear in energy efficient modern systems. Initially, we present a new microstructural model/processing route able to produce a homogeneous dispersion of in situ generated, discrete, solid lubricant particles in the volume of sintered composites. The high mechanical and tribological performances of the composites are a result of the combination of matrix mechanical properties and structural parameters, such as the degree of continuity of the metallic matrix, the nature, the amount, and the lubricant particle size and shape which determine the mean free path between solid lubricant particles and the active area covered by each lubricant particles. This new route was achieved by in situ formation of graphite nodules due to the dissociation of a precursor (SiC particles) mixed with metallic matrix powders during the feedstock preparation. Thermal debinding and sintering were performed in a single thermal cycle using a plasma-assisted debinding and sintering (PADS) process. Nodules of graphite (size ≤20 μm) presenting a nanostructured stacking of graphite foils with thickness of a few nanometers were obtained. Micro-Raman spectroscopy indicated that the graphite nodules are composed of a so-called turbostratic 2D graphite which has highly misaligned graphene planes separated by large interlamellae distance. The large interplanar distance and misalignment among the graphene foils has been confirmed by transmission electron microscopy and is, probably, the origin of the remarkably low dry friction coefficient (0.06). The effects of precursor content (0 to 5 wt% SiC) and of sintering temperature (1100 °C, 1150 °C and 1200 °C) on tribolayer durability and average friction coefficient in the lubricious regime (μ < 0.2) are presented and discussed. In addition, the effect of the metallic matrix composition (Fe-C; Fe-C-Ni; Fe-C-Ni-Mo) is presented. Friction coefficient decreased and durability drastically increased with the amount of graphite formed during sintering, whereas friction coefficient was little affected by sintering temperature. However, the durability of the tribolayer was greatly increased when lower sintering temperatures were used. The addition of alloying elements considerably reduced wear rate and friction of specimens and counter-bodies. Friction coefficient values as low as 0.04 were obtained for the Fe-C-Ni-Mo composites. We also analyzed the effect of precursor content and of sintering temperature on the tribological behavior under constant normal load sliding tests. Again, the presence of graphite nodules significantly reduced the friction coefficients and wear rates, whereas the sintering temperature hardly affected these parameters. The results were compared with those caused by other forms of graphite (nodules in nodular cast iron and powder graphite) and were discussed in terms of the crystalline structure of the analyzed graphite using micro-Raman spectroscopy. Chemical analyses of the wear scars using scanning electron microscopy (SEM – EDX) and Auger electron spectroscopy (AES) showed a tribolayer that was composed predominantly of carbon and oxygen. This tribolayer is removed and restored during sliding and is continuously replenished with graphite. Finally, the strong effect of surface finishing is presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cannaday, M.L., Polycarpou, A.A.: Tribology of unfilled and filled polymeric surfaces in refrigerant environment for compressor application. Tribol. Lett. 19, 249–262 (2005)

    CAS  Google Scholar 

  2. Demas, N.G., Polycarpou, A.A.: Tribological investigation of cast iron air-conditioning compressor surfaces in CO2 refrigerant. Tribol. Lett. 22(3), 271–278 (2006)

    CAS  Google Scholar 

  3. Lee, Y.Z., Oh, S.D.: Friction and wear of the rotary compressor vane–roller surfaces for several sliding conditions. Wear. 255, 1168–1173 (2003)

    CAS  Google Scholar 

  4. Solzak, T.A., Polycarpou, A.A.: Tribology of WC/C coatings for use in oil-less piston-type compressors. Surf. Coat. Technol. 201, 4260–4265 (2006)

    CAS  Google Scholar 

  5. Pergande, S.R., Polycarpou, A.A., Conry, T.F.: Nanomechanical properties of aluminum 390-T6 rough surfaces undergoing tribological testing. J. Tribol. Trans. ASME. 126, 573–582 (2004)

    CAS  Google Scholar 

  6. Oliveira Jr., M.M., Hammes, G., Binder, C., Klein, A.N., de Mello, J.D.B.: Solid lubrication in fluid film lubrication. Lubrication Science. 30, 102–115 (2018)

    Google Scholar 

  7. Lancaster, J.K.: Solid lubricants. In: Booser, E.R. (ed.) CRC Handbook of Lubrication: Theory and Practice of Tribology Theory and design, vol. II, pp. 269–290 (1). CRC Press, Boca Raton (1984)

    Google Scholar 

  8. Sliney, H.E.: Solid lubricant materials for high temperatures: a review. Tribol. Int. 15, 293–302 (1982)

    Google Scholar 

  9. Lansdown, A.R. Molybdenum disulphide lubrication. In: Dowson, D. (Ed.) Tribology series, vol. 35. Elsevier, Amsterdam (1999)

    Google Scholar 

  10. Brookes, C.A., Brookes, E.J.: Diamond on perspective. A review of mechanical properties of natural diamond. Diamond Relat. Mater. 1, 13–17 (1991)

    CAS  Google Scholar 

  11. Donnet, C., Erdemir, A.: Historical developments and new trends in tribological and solid lubricant coatings. Surf. Coat. Technol. 180/181, 76–84 (2004)

    Google Scholar 

  12. De Mello, J.D.B., Binder, R.: A methodology to determine surface durability in multifunctional coatings applied to soft substrates. Tribol. Int. 39, 769–773 (2006)

    Google Scholar 

  13. De Mello, J.D.B., Binder, R., Demas, N.G., Polycarpou, A.A.: Effect of the actual environment present in hermetic compressors on the tribological behaviour of a Si rich multifunctional DLC coating. Wear. 267, 907–915 (2009)

    Google Scholar 

  14. Bhushan, B. (ed.): Modern Tribology Handbook, vol. II. CRC Press, Boca Raton (2001)

    Google Scholar 

  15. Erdemir, A.: In: Bhushan, B. (ed.) Modern Tribology Handbook, vol. II, pp. 787–825. CRC Press, Boca Raton (2001)

    Google Scholar 

  16. Kimura, Y., Wakabayashi, T., Okada, K., Wada, T., Nishikawa, H.: Boron nitride as a lubricant additive. Wear. 232, 199–206 (1999)

    CAS  Google Scholar 

  17. Erdemir, A.: Review of engineered tribological interfaces for improved boundary lubrication. Tribol. Int. 38(3), 249–256 (2005)

    CAS  Google Scholar 

  18. Rapoport, L., Feldman, Y., Homyonfer, M., Cohen, H., Sloan, J., Hutchison, J.L., Tenne, R.: Inorganic fullerene-like material as additives to lubricants: structure-function relationship. Wear. 225–229, 975–982 (1999)

    Google Scholar 

  19. Joly-Pottuz, L., Dassenoy, F., Belin, M., Vacher, B., Martin, J.M., Fleischer, N.: Ultralow-friction and wear properties of IF-WS2 under boundary lubrication. Tribol. Lett. 18(4), 477–485 (2005)

    CAS  Google Scholar 

  20. Tontini, G., Semione, G.D.L., Bernardi, C., Binder, R., de Mello, J.D.B., Drago, V.: Synthesis of nanostructured flower-like MoS2 and its friction properties as additive in lubricating oils. Indust. Lubr. Tribol. 68(6), 658–664 (2016)

    Google Scholar 

  21. Pacheco, F.G., Oliveira Jr, M.M., Santos, A.P., Costa, H.L., de Mello, J.D. B., Furtado, C.A.: Tribological evaluation of carbon nanotubes as additives in palm biolubricants. Submitted to Lubricants (2017)

    Google Scholar 

  22. Pauleau, Y., Thièry, F.: Deposition and characterization of nanostructured metalycarbon composite films. Surf. Coat. Technol. 180–181, 313–322 (2004)

    Google Scholar 

  23. Erdemir, A.: Review of engineered tribological interfaces for improved boundary lubrication. Tribol. Int. 38, 249–256 (2005)

    CAS  Google Scholar 

  24. Kato, H., Takama, M., Iwai, Y., Washida, K., Sasaki, Y.: Wear and mechanical properties of sintered copper–tin composites containing graphite or molybdenum disulfide. Wear. 255, 573–578 (2003)

    CAS  Google Scholar 

  25. Dangsheng, X.: Lubrication behaviour of Ni–Cr-based alloys containing MoS2 at high temperature. Wear. 251, 1094–1099 (2001)

    Google Scholar 

  26. Huang, C., Du, L., Zhang, W.: Effects of solid lubricant content on the microstructure and properties of NiCr/Cr3C2–BaF2·CaF2 composite coatings. J. Alloys Compd. 479, 777–784 (2009)

    CAS  Google Scholar 

  27. Zhu, S., Bi, Q., Yang, J., Liu, W., Xue, Q.: Effect of particle size on tribological behaviour of Ni3Al matrix high temperature self-lubricating composites. Tribol. Int. 44, 1800–1809 (2011)

    CAS  Google Scholar 

  28. Reeves, C.J., Menezes, P.L., Lovell, M.R., Jen, T.C.: The influence of surface roughness and particulate size on the tribological performance of bio-based multi-functional hybrid lubricants. Tribol. Int. 88, 40–55 (2015)

    CAS  Google Scholar 

  29. Zhang, D., Lin, P., Dong, G., Zen, Q.: Mechanical and tribological properties of self-lubricating laminated composites with flexible design. Mater. Des. 50, 830–838 (2013)

    CAS  Google Scholar 

  30. Burris, D.L., Sawyer, W.G.: A low friction and ultra-low wear rate PEEK/PTFE composite. Wear. 261, 410–418 (2006)

    CAS  Google Scholar 

  31. Ouyang, J.H.: Microstructure and tribological properties of ZrO2(Y2O3) matrix composites doped with different solid lubricants from room temperature to 800 °C. Wear. 267, 1353–1360 (2009)

    CAS  Google Scholar 

  32. Chen, B., Bi, Q., Yang, J., Xia, Y., Hao, J.: Tribological properties of solid lubricants (graphite, h-BN) for Cu-based P/M friction composites. Tribol. Int. 41, 1145–1152 (2008)

    CAS  Google Scholar 

  33. Moghadam, A.D., Omrani, E., Menezes, P.L., Rohatgi, P.K.: Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene: a review. Compos. Part B Eng. 77, 402–420 (2015)

    Google Scholar 

  34. Tsuya, Y., Shimura, H., Umeda, K.: A study of the properties of copper and copper- tin base self-lubricating composites. Wear. 22, 143–162 (1972)

    CAS  Google Scholar 

  35. Liu, E.R., Wang, W., Gao, Y., Jia, J.: Tribological properties of Ni-based self-lubricating composites with addition of silver and molybdenum disulfide. Tribol. Int. 57, 235–241 (2013)

    CAS  Google Scholar 

  36. Binder, C., Hammes, G., Schroeder, R.M., Klein, A.N., de Mello, J.D.B., Binder, R.: ‘Fine tuned’ steels point the way to focused future. Met. Powder Rep. 65, 29–37 (2010)

    Google Scholar 

  37. Mahathanabodee, S., Palathai, T., Raadnui, S., Tongsri, R., Sombatsompop, N.: Effects of hexagonal boron nitride and sintering temperature on mechanical and tribological properties of SS316L/h-BN composites. Mater. Des. 46, 588–597 (2013)

    CAS  Google Scholar 

  38. de Mello, J.D.B., Binder, R., Klein, A.N., Hutchings, I.M.: Effect of compaction pressure and powder grade on microstructure and hardness of steam oxidised sintered iron. Powder Metall. 44, 53–61 (2001)

    Google Scholar 

  39. de Mello, J.D.B., Hutchings, I.M.: Effect of processing parameters on the surface durability of steam-oxidized sintered iron. Wear. 250, 435–448 (2001)

    Google Scholar 

  40. Ahn, H.S., Kim, J.Y., Lim, D.S.: Tribological behaviour of plasma-sprayed zirconia. Wear. 203, 77–87 (1997)

    Google Scholar 

  41. PM Design Center of Metal Powder Industries Federation: Conventional Powdered Metal Components, 17 p (2012)

    Google Scholar 

  42. Tamura, S., Aizawa, T., Mitzuno, T., Kihara, J.: Steel powder compaction analysis. Int. J. Powder Metall. 34, 50–59 (1998)

    CAS  Google Scholar 

  43. Al-Qureshi, H.A., Galiotto, A., Klein, A.N.: On the mechanics of cold die compaction for powder metallurgy. J. Mater. Process. Technol. 166, 135–143 (2005)

    CAS  Google Scholar 

  44. Pavanati, H.C., Maliska, A.M., Klein, A.N., Muzart, J.L.R.: Comparative study of porosity and pores morphology of unalloyed iron sintered in furnace and plasma reactor. Mater. Res. 10(1), 87–93 (2007)

    CAS  Google Scholar 

  45. Hammes, G., Schroeder, R.M., Binder, C., Klein, A.N., de Mello, J.D.B.: Effect of double pressing/double sintering on the sliding wear of self-lubricating sintered composites. Tribol. Int. 70, 119–127 (2014)

    CAS  Google Scholar 

  46. Milligan, D., et al.: Materials properties of heat treated double pressed/sintered P/M steels in comparison to warm compacted/sinterhardened materials. In: PM2TEC Advances in Powder Metallurgy and Particulate Materials, vol. 4, pp. 130–137 (2002)

    Google Scholar 

  47. James, B., et al.: Optimized double press-double sinter powder metallurgy method. US Patent 5,080,712, 1992

    Google Scholar 

  48. German, R.M.: Powder Metallurgy and Particulate Materials Processing, 1st edn, p. 528. Metal Powder Industries Federation, Princeton (2005)

    Google Scholar 

  49. German, R.M.: Powder Injection Molding, p. 521. Metal Powder Industries Federation, Princeton (1990)

    Google Scholar 

  50. Machado, R., Ristow, Jr., W., Klein, A.N., Muzart, J.L.R., et al.: Industrial plasma reactor for plasma assisted thermal debinding of powder injection molded parts. US Patent US7,718,919B2, PCT (WO 2006012718) and INPI (PI-0403536-4), 2010

    Google Scholar 

  51. Wendhausen, P.A.P., Fusao, D., Klein, A.N., Muzart, J.L.R., et al.: Plasma assisted debinding and sintering: process and equipment. In: Proceeding of the Powder Metallurgy World Congress & Exhibition, EURO PM2004, Vienna, vol. 4, pp. 37–142 (2004)

    Google Scholar 

  52. Klein, A.N., Muzart, J.L.R, et al.: Process for removal of binders from parts produced by powder injection moulding. US Patent US 6,579,493 B1, 2003

    Google Scholar 

  53. Klein, A.N., Binder, C., Hammes, G., de Mello, J.D.B., Ristow, W., Binder, R.: Self lubricating sintered steels with high mechanical resistance obtained via in situ formation of solid lubricant particles during sintering. In: Proceedings of EURO PM2009, vol. 1, pp. 191–196 (2009)

    Google Scholar 

  54. Binder, R., Klein, A.N., Binder, C., Hammes, G., Parucker, M.L., Ristow Jr., W.: Composicao metalurgica de materiais particulados, produto sinterizado autolubrificante e processo de obtencao de produtos sinterizados autolubrificantes. Patent application, PI 0803956-9, INPI, Brazil, 2008

    Google Scholar 

  55. Binder R., Binder, C., Ristow Jr., W., Klein, A.N.: Composition of particulate materials for forming self-lubricating products in sintered steels, product in self- lubricating sintered steel and process for obtaining self-lubricating products in sintered steel, PI0805606-Brazil; US 20110286873A1-USA; International Number: WO 2010/069020 A2-Europe; CN102497948A-China; JP 2012-512320-Japan; 10-2011-0110179-South Korea; SG 172168 A1-Singapore, TW 201034773 A1-Taiwan 2008

    Google Scholar 

  56. Lancaster, J.K.: Solid lubricants. In: Booser, E.R. (ed.) CRC Handbook of Lubrication, Theory and Practice of Tribology Theory and design, vol. II. CRC Press, Boca Raton (1984)

    Google Scholar 

  57. Xua, J., Zhang, R., Chena, P., Shena, D., Yea, X., Ge, S.: Mechanism of formation and electrochemical performance of carbide-derived carbons obtained from different carbides. Carbon. 64, 444–455 (2013)

    Google Scholar 

  58. Totten, G. (ed.): Steel Heat Treatment: Metallurgy and Technologies, p. 191. CRC Press, Boca Raton (2007)

    Google Scholar 

  59. Binder, C., Bendo, T., Pereira, R. V., Hammes, G., de Mello, J.D.B, Klein, A.N.: Influence of the SiC content and sintering temperature on the microstructure, mechanical properties and friction behaviour of sintered self-lubricating composites. Powder Metallurgy. 59, 1–10 (2016). https://doi.org/10.1080/00325899.2016.1250036

  60. Callister Jr., W.D.: Fundamentals of Materials Science and Engineering, p. 552. Wiley, New York (2001)

    Google Scholar 

  61. Binder, C.: Desenvolvimento de novos tipos de aços sinterizados autolubrificantes a seco com elevada resistência mecânica aliada a baixo coeficiente de atrito via moldagem de pós por injeção. Ph.D. Thesis, Federal University of Santa Catarina, Brazil, 178 p. In Portuguese (2009)

    Google Scholar 

  62. ASM: ASM Handbook, Volume 1: Properties and Selection: Irons, Steels, and High-Performance Alloys, vol. 1. ASM International, Materials Park. 1063 p (1990)

    Google Scholar 

  63. Thelning, K.E: Steels and its heat treatment, 2nd edn. Butterworths, London. 450 p (1984)

    Google Scholar 

  64. Rohatgi, P.K., Ray, S., Liu, Y.: Tribological properties of metal matrix graphite particle composites. Int. Mater. Rev. 37, 129–149 (1992)

    CAS  Google Scholar 

  65. Matthews, M.J., Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S., Endo, M.: Origin of dispersive effects of the Raman D-band in disordered carbon materials. Phys. Rev. B. 59, R6585 (1999)

    CAS  Google Scholar 

  66. Cançado, L.G., Pimenta, M.A., Saito, R., et al.: Stokes and anti-stokes double resonance Raman scattering in two-dimensional graphite. Phys. Rev. B. 66, 035415 (2002)

    Google Scholar 

  67. Ferrari, A.C., Meyer, V., Scardaci, C., et al.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    CAS  Google Scholar 

  68. Ferrari, A.C.: Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and non adiabatic effects. Solid State Commun. 143, 47–57 (2007)

    CAS  Google Scholar 

  69. de Mello, J.D.B., Binder, C., Binder, R., Klein, A.N.: Effect of precursor content and sintering temperature on the scuffing resistance of sintered self-lubricating steel. Wear. 271, 1862–1867 (2011)

    Google Scholar 

  70. Ferrari, A.C., Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B. 61, 14095–14107 (2000)

    CAS  Google Scholar 

  71. Lespade, P., Marchand, A., Couzi, M., Cruege, F.: Caracterisation de materiaux carbones par microspectrometrie Raman. Carbon. 22, 375–385 (1984)

    CAS  Google Scholar 

  72. Binder, C., Bendo, T., Hammes, G., Neves, G.O., de Mello, J.D.B, Klein, A.N., Binder, R.: Structure and properties of in situ generated 2D turbostratic graphite nodules. Carbon. 124, 685–692 (2017)

    Google Scholar 

  73. Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S., Cançado, L.G., Jorio, A., Saito, R.: Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 9, 1276–1291 (2007)

    CAS  Google Scholar 

  74. Le Roux, H.: An electron diffraction analysis of turbostratic graphite in cemented carbides. Acta Metall. 33, 309–315 (1985)

    Google Scholar 

  75. Karthik, C., Kane, J., Butt, D.P., Windes, W.E., Ubic, R.: Microstructural characterization of next generation nuclear graphites. Microsc. Microanal. 18, 272–278 (2012)

    CAS  Google Scholar 

  76. Campos, K.R.: Caracterização tribológica da lubrificação sólida. Ph.D. Thesis, Universidade Federal de Uberlândia, Brazil, 2012, 162 p. In Portuguese (2012)

    Google Scholar 

  77. Lim, S.C., Brunton, J.H.: The unlubricated wear of sintered iron. Wear. 113, 371–382 (1986)

    CAS  Google Scholar 

  78. Campos, K.R., Kapsa, P., Binder, C., Binder, R., Klein, A.N., de Mello, J.D.B.: Tribological evaluation of self-lubricating sintered steels. Wear. 332–333, 932–940 (2015)

    Google Scholar 

  79. Keller, J., Fridrici, V., Kapsa, P.H., Huard, J.F.: Surface topography and tribology of cast iron in boundary lubrication. Tribol. Int. 42, 1011–1018 (2009)

    CAS  Google Scholar 

  80. Zum Gahr, K.H.: Microstructure and Wear of Materials Tribolology Series, vol. 10. Elsevier, Amsterdam (1987.) 560 pp

    Google Scholar 

  81. Babu, S.S.: Acicular ferrite and bainite in steels. Ph.D. Thesis, University of Cambridge, UK (1992)

    Google Scholar 

  82. de Mello, J.D.B., Binder, C., Hammes, G., Klein, A.N.: Effect of the metallic matrix on the sliding wear of plasma assisted debinded and sintered MIM self-lubricating steel. Wear. 301, 648–655 (2013)

    Google Scholar 

  83. Beattie, I.R., Gibson, T.R.J.: J. Chem. Soc. A. 6, 980 (1970)

    Google Scholar 

  84. Oh, S.J., Cook, D.C., Townsend, H.E.: Characterization of iron oxides commonly formed as corrosion product on steel. Hyperfine Interact. 112, 59–65 (1998)

    CAS  Google Scholar 

  85. Crockett, R.M., Derendinger, M.P., Hug, P.L., Roos, S.: Wear and electrical resistance on diesel lubricated surfaces undergoing reciprocating sliding. Tribol. Lett. 16, 187–194 (2004)

    CAS  Google Scholar 

  86. Ouyang, M., Hiraoka, H.: Structure and magnetic properties of iron oxide films deposited by excimer laser ablation of a metal-containing polymer. Mater. Res. Bull. 32, 1099–1107 (1997)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Daniel Biasoli de Mello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Mello, J.D.B., Binder, C., Probst, S.M.H., Klein, A.N. (2018). In Situ Generated Turbostratic 2D Graphite: A New Way to Obtain High-Performance Self-Lubricating Iron-Based Composites. In: Menezes, P., Rohatgi, P., Omrani, E. (eds) Self-Lubricating Composites. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56528-5_7

Download citation

Publish with us

Policies and ethics