Skip to main content

RETRACTED CHAPTER: Fundamentals of Solid Lubricants

  • Chapter
  • First Online:

Abstract

Solid lubricants technology is a flourish field that deserves the attention of the designer of machines and devices that will operate in ordinary as well as in extreme environments. This chapter describes solid lubrication processes, the mechanisms by which solid lubricants function, the properties of solid lubricants, and the materials involved in solid lubrication and techniques for their application. Reliability of solid lubrication and wear life of solid-film lubricants are being improved by designing machine elements specifically to employ solid lubricants and by careful matching of the solid lubricant with the substrate bearing material. Solid lubricants are applied either as surface coatings or as fillers in self-lubricating composites. Tribological (friction and wear) contacts with solid lubricant coatings typically result in transfer of a thin layer of material from the surface of the coating to the counterface, commonly known as a transfer film or tribofilm. The wear surfaces can exhibit different chemistry, microstructure, and crystallographic texture from those of the bulk coating due to surface chemical reactions with the surrounding environment. As a result, solid lubricant coatings that give extremely low friction and long wear life in one environment can fail to do so in a different environment. Most solid lubricants exhibit non-Amontonian friction behavior with friction coefficients decreasing with increasing contact stress. The main mechanism responsible for low friction is typically governed by interfacial sliding between the worn coating and the transfer film. Strategies are discussed for the design of novel coating architectures to adapt to varying environments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Change history

  • 17 July 2020

    The authors have retracted this chapter [1] because it significantly overlaps with a previously published article by Scharf and Prasad [2]. All authors agree with this retraction. [1] Prajapati A.K., Omrani E., Menezes P.L., Rohatgi P.K.: Fundamentals of Solid Lubricants. In: Menezes P., Rohatgi P., Omrani E. (eds.) Self-Lubricating Composites. Springer, Berlin

References

  1. Rohatgi, P.K., Menezes, P.L., Lovell, M.R., Kailas, S.V.: Addition of solid lubricants to metal matrices and liquid lubricants to improve tribological performance. ASIATRIB (2014)

    Google Scholar 

  2. Tabor, D.: Friction – the present state of our understanding. J. Lubr. Technol. 103(2), 169–179 (1981)

    CAS  Google Scholar 

  3. Rabinowicz, E.: Friction and Wear of Materials, 3rd edn, p. 34. Wiley, New York (1995)

    Google Scholar 

  4. Rabinowicz, E.: The determination of the compatibility of metals through static friction tests. ASLE Trans. 14(3), 198–205 (1971)

    CAS  Google Scholar 

  5. Scharf, T.W., Prasad, S.V.: Solid lubricants: a review. J. Mater. Sci. 48, 511–531 (2013). https://doi.org/10.1007/s10853-012-7038-2

    Article  CAS  Google Scholar 

  6. Gao, G.T., Mikulski, P.T., Harrison, J.A.: Molecular-scale tribology of amorphous carbon coatings: effects of film thickness, adhesion, and long-range interactions. J. Am. Chem. Soc. 124(24), 7202–7209 (2002)

    CAS  Google Scholar 

  7. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  8. Larsen-Basse, J.: ASM Handbook, Vol 18: Friction, Lubrication, and Wear Technology, p. 30. (1992)

    Google Scholar 

  9. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. A. 295(1442), 300–319 (1966)

    CAS  Google Scholar 

  10. Whitehouse, D.J., Archard, J.F.: The properties of random surfaces of significance in their contact. Proc. R. Soc. Lond. A316(1524), 97–121 (1970)

    Google Scholar 

  11. Bower, A.F., Johnson, K.L.: The influence of strain hardening on cumulative plastic deformation in rolling and sliding line contact. J. Mech. Phys. Solids. 34(4), 471–493 (1989)

    Google Scholar 

  12. Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids, pp. 112–120. Clarendon Press, Oxford (1986)

    Google Scholar 

  13. Stoyanov, P., Chromik, R.R., Goldbaum, D., Lince, J.R., Zhang, X.: Microtribological performance of Au–MoS2 and Ti–MoS2 coatings with varying contact pressure. Tribol. Lett. 40(1), 199–211 (2010)

    CAS  Google Scholar 

  14. Stoyanov, P., Strauss, H.W., Chromik, R.R.: Scaling effects between micro- and macro-tribology for a Ti–MoS2 coating. Wear. 274–275, 149–161 (2012)

    Google Scholar 

  15. Chromik, R.R., Wahl, K.J.: World Tribology Congress III, pp. 829–830. American Society of Mechanical Engineers, New York (2005)

    Google Scholar 

  16. Singer, I.L., Dvorak, S.D., Wahl, K.J., Scharf, T.W.: Role of third bodies in friction and wear of protective coatings. J. Vac. Sci. Technol. A. 21(5), S232–S240 (2003)

    CAS  Google Scholar 

  17. Wahl, K.J., Sawyer, W.G.: Observing interfacial sliding processes in solid–solid contacts. MRS Bull. 33(12), 1159–1167 (2008)

    CAS  Google Scholar 

  18. Miyoshi, K.: Solid Lubricants, and Coatings for Extreme Environments: State-of-the-Art Survey. NASA/TM – 2007-214668

    Google Scholar 

  19. Strauss, H.W., Chromik, R.R., Hassani, S., Klemberg-Sapieha, J.E.: In situ tribology of nanocomposite Ti–Si–C–H coatings prepared by PE-CVD. Wear. 272(1), 133–148 (2011)

    CAS  Google Scholar 

  20. Schmellenmeier, H.: Exp. Tech. Phys. 1, 49 (1953)

    Google Scholar 

  21. Robertson, J.: Amorphous carbon. Adv. Phys. 35(4), 317–374 (1986)

    CAS  Google Scholar 

  22. Erdemir, A., Donnet, C. (eds.): Tribology of Diamond-like Carbon Films: Fundamentals and Applications. Springer, New York (2008)

    Google Scholar 

  23. Eisenberg, S., Chabot, R.: Ion-beam deposition of thin films of diamondlike carbon. J. Appl. Phys. 42(7), 2953–2958 (1971)

    Google Scholar 

  24. Braithwaite, E.R.: Solid Lubricants and Surfaces, p. 139. Clarendon Press, Oxford (1964)

    Google Scholar 

  25. Deacon, R.F., Goodman, J.F.: Lubrication by lamellar solids. Proc. R. Soc. Lond. A. 243(1235), 464–482 (1958)

    Google Scholar 

  26. Roselman, I.C., Tabor, D.: The friction of carbon fibres. J. Phys. D. 9(17), 2517 (1976)

    CAS  Google Scholar 

  27. Buckley, D.H.: Surface Effects in Adhesion, Friction, Wear and Lubrication. Elsevier, Amsterdam (1981)

    Google Scholar 

  28. Skinner, J., Gane, N., Tabor, D.: Micro-friction of graphite. Nature. 232(35), 195 (1971)

    CAS  Google Scholar 

  29. Savage, R.H.: Graphite lubrication. J. Appl. Phys. 19(1), 1–10 (1948)

    CAS  Google Scholar 

  30. Ramadanoff, D., Glass, S.W.: High-altitude brush problem. Trans. Am. Inst. Electr. Eng. 63(11), 825–829 (1944)

    Google Scholar 

  31. Yen, B.K., Schwickert, B.E., Toney, M.F.: Origin of low-friction behavior in graphite investigated by surface x-ray diffraction. Appl. Phys. Lett. 84(23), 4702–4704 (2004)

    CAS  Google Scholar 

  32. Tallant, D.R., Parmeter, J.E., Siegal, M.P., Simpson, R.L.: The thermal stability of diamond-like carbon. Diam. Relat. Mater. 4(3), 191–199 (1995)

    CAS  Google Scholar 

  33. Robertson, J.: Diamond-like amorphous carbon. Mater. Sci. Eng. R. 37(4–6), 129–281 (2002)

    Google Scholar 

  34. Grill, A.: Review of the tribology of diamond-like carbon. Wear. 168(1–2), 143–153 (1993)

    CAS  Google Scholar 

  35. Erdemir, A., Donnet, C.: Tribology of diamond-like carbon films: recent progress and future prospects. J. Phys. D. Appl. Phys. 39(18), R311 (2006)

    CAS  Google Scholar 

  36. Koidl, P., Wagner, C., Dischler, B., Wagner, J., Ramsteiner, M.: Plasma deposition, properties and structure of amorphous hydrogenated carbon films. Mater. Sci. Forum. 52, 41 (1990)

    Google Scholar 

  37. Tamor, M.A., Vassell, W.C., Carduner, K.R.: Atomic constraint in hydrogenated “diamond-like” carbon. App. Phys. Lett. 58(6), 592–594 (1991)

    CAS  Google Scholar 

  38. Donnet, C., Fontaine, J., Lefevre, F., Grill, A., Patel, V., Jahnes, C.: Solid state 13 C and 1 H nuclear magnetic resonance investigations of hydrogenated amorphous carbon. J. App. Phys. 85(6), 3264–3270 (1999)

    CAS  Google Scholar 

  39. Weiler, M., Sattel, S., Giessen, T., Jung, K., Ehrhardt, H., Veerasamy, V.S., Robertson, J.: Preparation and properties of highly tetrahedral hydrogenated amorphous carbon. Phys. Rev. B. 53(3), 1594 (1996)

    CAS  Google Scholar 

  40. Erdemir, A., Eryilmaz, O.L., Fenske, G.: Synthesis of diamondlike carbon films with superlow friction and wear properties. J. Vac. Sci. Technol. A. 18(4), 1987–1992 (2000)

    CAS  Google Scholar 

  41. Erdemir, A.: Friction and wear of diamond and diamond-like carbon films. Proc. Inst. Mech. Eng. J. 216(6), 387–400 (2002)

    CAS  Google Scholar 

  42. Scharf, T.W., Ohlhausen, J.A., Tallant, D.R., Prasad, S.V.: Mechanisms of friction in diamondlike nanocomposite coatings. J. Appl. Phys. 101(6), 063521 (2007)

    Google Scholar 

  43. Donnet, C.: Recent progress on the tribology of doped diamond-like and carbon alloy coatings: a review. Surf. Coat. Technol. 100, 180–186 (1998)

    Google Scholar 

  44. Sliney, H.E.: Solid lubricant materials for high temperatures – a review. Tribol. Int. 15(5), 303–315 (1982)

    CAS  Google Scholar 

  45. Prasad, S.V., Zabinski, Tribology of tungsten disulphide (WS2): characterization of wear-induced transfer films. J.S.: J. Mater. Sci. Lett. 12(18), 1413–1415 (1993)

    Google Scholar 

  46. Scharf, T.W., Singer, I.L.: Quantification of the thickness of carbon transfer films using Raman tribometry. Tribol. Lett. 14(2), 137–145 (2003)

    CAS  Google Scholar 

  47. Prasad, S.V., Zabinski, J.S.: Lubricants: super slippery solids. Nature. 387(6635), 761 (1997)

    CAS  Google Scholar 

  48. Singer, I.L.: In: Singer, I.L., Pollock, H.M. (eds.) Fundamentals of Friction: Macroscopic and Microscopic Processes, p. 237. Kluwer, Dordrecht (1992)

    Google Scholar 

  49. Brainard, W.A.: The thermal stability and friction of the disulfides, diselenides, and ditellurides of molybdenum and tungsten in vacuum. NASA TN D5141 (1969)

    Google Scholar 

  50. Prasad, S.V., Zabinski, J.S., McDevitt, N.T.: Friction behavior of pulsed laser deposited tungsten disulfide films. Tribol. Trans. 38(1), 57–62 (1995)

    CAS  Google Scholar 

  51. Zabinski, J.S., Donley, M.S., Prasad, S.V., McDevitt, N.K.: Synthesis and characterization of tungsten disulphide films grown by pulsed-laser deposition. J. Mater. Sci. 29(18), 4834–4839 (1994). https://doi.org/10.1007/BF00356530

    Article  CAS  Google Scholar 

  52. Chromik, R.R., Strauss, H.W., Scharf, T.W.: Materials phenomena revealed by in situ tribometry. J. Manag. 64(1), 35–43 (2012)

    CAS  Google Scholar 

  53. Muratore, C., Bultman, J.E., Aouadi, S.M., Voevodin, A.A.: In situ Raman spectroscopy for examination of high temperature tribological processes. Wear. 270(3–4), 140–145 (2011)

    CAS  Google Scholar 

  54. Wahl, K.J., Dunn, D.N., Singer, I.L.: Wear behavior of Pb–Mo–S solid lubricating coatings. Wear. 230(2), 175–183 (1999)

    CAS  Google Scholar 

  55. Scharf, T.W., Kotula, P.G., Prasad, S.V.: Friction and wear mechanisms in MoS2/Sb2O3/Au nanocomposite coatings. Acta Mater. 58(12), 4100–4109 (2010)

    CAS  Google Scholar 

  56. Hu, J.J., Wheeler, R., Zabinski, J.S., Shade, P.A., Shiveley, A., Voevodin, A.A.: Transmission electron microscopy analysis of Mo–W–S–Se film sliding contact obtained by using focused ion beam microscope and in situ microtribometer. Tribol. Lett. 32(1), 49–57 (2008)

    CAS  Google Scholar 

  57. Muratore, C., Voevodin, A.A.: Chameleon coatings: adaptive surfaces to reduce friction and wear in extreme environments. Ann. Rev. Mater. Res. 39, 297–324 (2009)

    CAS  Google Scholar 

  58. Hilton, R., Fleischauer, P.D.: Applications of solid lubricant films in spacecraft. In: Metallurgical Coatings and Thin Films, 435–441 (1992)

    Google Scholar 

  59. Zabinski, J.S., Donley, M.S., Walck, S.D., Schneider, T.R., McDevitt, N.T.: The effects of dopants on the chemistry and tribology of sputter-deposited MoS2 films. Tribol. Trans. 38(4), 894–904 (1995)

    CAS  Google Scholar 

  60. Teer, D.G.: New solid lubricant coatings. Wear. 251(1–12), 1068–1074 (2001)

    Google Scholar 

  61. Fox, V.C., Renevier, N., Teer, D.G., Hampshire, J., Rigato, V.: The structure of tribologically improved MoS2–metal composite coatings and their industrial applications. Surf. Coat. Technol. 116, 492–497 (1999)

    Google Scholar 

  62. Scharf, T.W., Prasad, S.V., Dugger, M.T., Kotula, P.G., Goeke, R.S., Grubbs, R.K.: Growth, structure, and tribological behavior of atomic layer-deposited tungsten disulphide solid lubricant coatings with applications to MEMS. Acta Mater. 54(18), 4731–4743 (2006)

    CAS  Google Scholar 

  63. Tarasov, S., Kolubaev, A., Belyaev, S., Lerner, M., Tepper, F.: Study of friction reduction by nanocopper additive to motor oil. Wear. 252, 63–69 (2002)

    CAS  Google Scholar 

  64. Xu, T., Zhao, J., Xu, K., Xue, Q.: Study on the tribological properties of ultradispersed diamond containing soot as an oil additive. Tribol. Trans. 40(1), 178–182 (1997)

    CAS  Google Scholar 

  65. Dong, J.X., Hu, Z.S.: A study of the anti-wear and friction-reducing properties of the lubricant additive, nanometer zinc borate. Tribol. Int. 31(5), 219–223 (1998)

    CAS  Google Scholar 

  66. Liu, W., Chen, S.: An investigation of the tribological behaviour of surface-modified ZnS nanoparticles in liquid paraffin. Wear. 238, 120–124 (2000)

    CAS  Google Scholar 

  67. Chen, S., Liu, W., Yu, L.: Preparation of DDP-coated PbS nanoparticles and investigation of the antiwear ability of the prepared nanoparticales as additive in liquid paraffin. Wear. 218, 153–158 (1998)

    CAS  Google Scholar 

  68. Xue, Q., Liu, W., Zhang, Z.: Friction and wear properties of a surface-modified TiO2 nanoparicle as an additive in liquid paraffin. Wear. 213, 29–32 (1997)

    CAS  Google Scholar 

  69. Gansheimer, J., Holinski, R.: Molybdenum disulfide in oils and greases under boundary conditions. ASME J. Lubr. Technol. 95, 242–248 (1973)

    CAS  Google Scholar 

  70. Wo, H., Hu, K., Hu, X.: Tribological properties of MoS2 nanoparticles as additive in a machine oil. Tribology. 24(1), 33–37 (2004)

    CAS  Google Scholar 

  71. Bartz, W.J.: Solid lubricant additive-effect of concentration and other additives on antiwear performance. Wear. 17, 421–432 (1971)

    CAS  Google Scholar 

  72. Bartz, W.J.: Some investigation on the influence of particle size on the lubrication effectiveness of molybdenum disulfide. ASLE Trans. 15, 207–215 (1972)

    CAS  Google Scholar 

  73. Bartz, W.J., Oppelt, J.: Lubricating effectiveness of oil-soluble additives and molybdenum disulfide dispersed in mineral oil. Lubr. Eng. 36(10), 579–585 (1980)

    CAS  Google Scholar 

  74. Cusano, C., Sliney, H.E.: Dynamics of solid dispersions in oil during the lubrication of point contacts. Part I. Graphite. ASEM Trans. 25(2), 183–189 (1982)

    CAS  Google Scholar 

  75. Chu, S., Jin, Z., Xue, Q.: Study of the interaction between natural flake graphite and oil soluble additives. Tribology. 17(4), 340–347 (1997)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kumar Prajapati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prajapati, A.K., Omrani, E., Menezes, P.L., Rohatgi, P.K. (2018). RETRACTED CHAPTER: Fundamentals of Solid Lubricants. In: Menezes, P., Rohatgi, P., Omrani, E. (eds) Self-Lubricating Composites. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56528-5_1

Download citation

Publish with us

Policies and ethics