Skip to main content

Medical Image Quality Assessment

  • Chapter
  • First Online:
Visual Quality Assessment for Natural and Medical Image

Abstract

Medical image quality assessment (MIQA) is of great significance to the development of medical imaging technology, which is widely used in computer-aided detection and diagnosis of diseases. However, MIQA evaluates the quality of images according to how well they offer useful and effective presentation to assist with physicians in diagnosing, which is greatly different from the purposes of natural image quality assessment. In this chapter, we present some of the new advances in MIQA by taking some application tasks for instances. The first case concerns evaluating the quality of portable fundus camera photographs, which is used with telemedicine and plays an important role in ophthalmology. The next example is the study on a more advanced type of imaging techniques, which is called susceptibility weighted imaging. The followed case is an adaptive paralleled sinogram noise reduction method based on relative quality assessment provided, which can increase both efficiency and performance of low-dose computed tomography (CT) noise reduction algorithms. The lastly presented study concentrates on the relationship between the image quality and imaging dose in low-dose cone beam CT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya, T., & Ray, A. K. (2005). Image processing: Principles and applications. Wiley.

    Google Scholar 

  • Baumueller, S., Winklehner, A., Karlo, C., Goetti, R., Flohr, T., Russi, E. W., et al. (2012). Low-dose CT of the lung: Potential value of iterative reconstructions. European Radiology, 22(12), 2597–2606.

    Article  Google Scholar 

  • Beyersdorff, D., Taymoorian, K., Knösel, T., Schnorr, D., Felix, R., Hamm, B., et al. (2005). MRI of prostate cancer at 1.5 and 3.0 T: Comparison of image quality in tumor detection and staging. American Journal of Roentgenology, 185(5), 1214–1220.

    Article  Google Scholar 

  • Bian, J., Sharp, G. C., Park, Y., Ouyang, J., Bortfeld, T., & Fakhri, G. E. (2016). Investigation of cone-beam CT image quality trade-off for image-guided radiation therapy. Physics in Medicine & Biology, 61(9), 3317–3346.

    Article  Google Scholar 

  • Bohning, D. E., Lomarev, M., Denslow, S., Nahas, Z., Shastri, A., & George, M. (2001). Feasibility of vagus nerve stimulation–synchronized blood oxygenation level–dependent functional MRI. Investigative Radiology, 36(8), 470–479.

    Article  Google Scholar 

  • Brenner, D. J., Elliston, C. D., Hall, E. J., & Berdon, W. E. (2001). Estimated risks of radiation-induced fatal cancer from pediatric CT. American Journal of Roentgenology, 176(2), 289–296.

    Article  Google Scholar 

  • Brenner, D. J., & Hall, E. J. (2007). Computed tomography—An increasing source of radiation exposure. The New England Journal of Medicine, 357(22), 2277–2284.

    Article  Google Scholar 

  • Cavaro-Ménard, C., Zhang, L., & Callet, P. L. (2010). Diagnostic quality assessment of medical images: Challenges and trends. In 2nd European Workshop on Visual Information Processing, Paris, France. Piscataway, USA: IEEE, pp. 277–284.

    Google Scholar 

  • Chang, C. C., & Lin, C. J. (2011). LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 1–27.

    Article  Google Scholar 

  • Chapman, D., Thomlinson, W., Johnston, R. E., Washburn, D., Pisano, E., Gmür, N., et al. (1997). Diffraction enhanced x-ray imaging. Physics in Medicine & Biology, 42(11), 2015–2025.

    Article  Google Scholar 

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.

    MATH  Google Scholar 

  • Cosman, P. C., Gray, R. M., & Olshen, R. A. (1994). Evaluating quality of compressed medical images: SNR, subjective rating, and diagnostic accuracy. Proceedings of the IEEE, 82(6), 919–932.

    Article  Google Scholar 

  • Cunningham, P. M., Brennan, D., O’Connell, M., Macmahon, P., O’Neill, P., & Eustace, S. (2007). Patterns of bone and soft-tissue injury at the symphysis pubis in soccer players: Observations at MRI. American Journal of Roentgenology, 188(3), W291–W296.

    Article  Google Scholar 

  • Daly, M., Siewerdsen, J., Moseley, D., Jaffray, D., & Irish, J. (2006). Intraoperative cone-beam CT for guidance of head and neck surgery: Assessment of dose and image quality using a C-arm prototype. Medical Physics, 33(10), 3767–3780.

    Article  Google Scholar 

  • Deák, Z., Grimm, J. M., Treitl, M., Geyer, L. L., Linsenmaier, U., Körner, M., et al. (2013). Filtered back projection, adaptive statistical iterative reconstruction, and a model-based iterative reconstruction in abdominal CT: An experimental clinical study. Radiology, 266(1), 197–206.

    Article  Google Scholar 

  • Deng, C., Ma, L., Lin, W., & Ngan, K. N. (2015). Visual signal quality assessment. Switzerland: Springer International Publishing.

    Book  Google Scholar 

  • Denk, C., & Rauscher, A. (2010). Susceptibility weighted imaging with multiple echoes. Journal of Magnetic Resonance Imaging, 31(1), 185–191.

    Article  Google Scholar 

  • Dias, J. M. P., Oliveira, C. M., & Cruz, L. A. D. S. (2014). Retinal image quality assessment using generic image quality indicators. Information Fusion, 19(1), 73–90.

    Article  Google Scholar 

  • Ding, G. X., & Coffey, C. W. (2009). Radiation dose from kilovoltage cone beam computed tomography in an image-guided radiotherapy procedure. International Journal of Radiation Oncology Biology Physics, 73(2), 610–617.

    Article  Google Scholar 

  • Ding, Y., Dai, H., & Wang, S. Z. (2014). Image quality assessment scheme with topographic independent components analysis for sparse feature extraction. Electronics Letters, 50(7), 509–510.

    Article  Google Scholar 

  • Dobbin, J. T., III, Samei, E., Ranger, N. T., & Chen, Y. (2006). Intercomparison of methods for image quality characterization. II. Noise power spectrum. Medical Physics, 33(5), 1466–1475.

    Article  Google Scholar 

  • Ehman, E. C., Guimarães, L. S., Fidler, J. L., Takahashi, N., Ramirez-Giraldo, J. C., Yu, L., et al. (2012). Noise reduction to decrease radiation dose and improve conspicuity of hepatic lesions at contrast-enhanced 80-kV hepatic CT using projection space denoising. American Journal of Roentgenology, 198(2), 405–411.

    Article  Google Scholar 

  • Elbakri, I. A., & Fessler, J. A. (2002). Statistical image reconstruction for polyenergetic X-ray computed tomography. IEEE Transactions on Medical Imaging, 21(2), 89–99.

    Article  Google Scholar 

  • Fasih, M., Langlois, J. M. P., Tahar, H. B., & Cheriet, F. (2014). Retinal image quality assessment using generic features. In Proceedings of SPIE (Vol. 9035, pp. 90352Z).

    Google Scholar 

  • Feldkamp, L., Davis, L., & Kress, J. (1984). Practical cone-beam algorithm. Journal of the Optical Society of America A, 1(6), 612–619.

    Article  Google Scholar 

  • Ferzli, R., & Karam, L. J. (2009). A no-reference objective image sharpness metric based on the notion of just noticeable blur (JNB). IEEE Transactions on Image Processing, 18(4), 717–728.

    Article  MathSciNet  MATH  Google Scholar 

  • Fessler, J. A., & Booth, S. D. (1999). Conjugate-gradient preconditioning methods for shift-variant PET image reconstruction. IEEE Transactions on Image Processing, 8(5), 688–699.

    Article  MathSciNet  MATH  Google Scholar 

  • Fleming, A. D., Philip, S., Goatman, K. A., Olson, J. A., & Sharp, P. F. (2006). Automated assessment of diabetic retinal image quality based on clarity and field definition. Investigative Ophthalmology & Visual Science, 47(3), 1120–1125.

    Article  Google Scholar 

  • Gao, H. (2012). Fast parallel algorithms for the x-ray transform and its adjoint. Medical Physics, 39(11), 7110–7120.

    Article  Google Scholar 

  • Ghrare, S. E., Ali, M. A. M., Ismail, M., & Jumari, K. (2008). Diagnostic quality of compressed medical images: Objective and subjective evaluation. In International Conference on Modeling & Simulation, 2008, AICMS 08. Second Asia.

    Google Scholar 

  • Giancardo, L., Abramoff, M. D., Chaum, E., Karnowski, T. P., Meriaudeau, F., & Tobin, K. W. (2008). Elliptical local vessel density: A fast and robust quality metric for retinal images. In 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2008.

    Google Scholar 

  • Ginesu, G., Massidda, F., & Giusto, D. D. (2006). A multi-factors approach for image quality assessment based on a human visual system model. Signal Processing: Image Communication, 21(4), 316–333.

    Google Scholar 

  • Gonzalez, A. B. D., & Darby, S. (2004). Risk of cancer from diagnostic X-rays: Estimates for the UK and 14 other countries. Lancet, 363(9406), 345–351.

    Article  Google Scholar 

  • Goossens, B., Luong, H., Platiša, L., & Philips, W. (2012). Optimizing image quality using test signals: Trading off blur, noise and contrast. In 4th International Workshop on Quality of Multimedia Experience, Yarra Valley, VIC, Australia (pp. 260–265). Piscataway, USA: IEEE.

    Google Scholar 

  • Grills, I. S., Hugo, G., Kestin, L. L., Galerani, A. P., Chao, K. K., Wloch, J., et al. (2008). Image-guided radiotherapy via daily online cone-beam CT substantially reduces margin requirements for stereotactic lung radiotherapy. International Journal of Radiation Oncology Biology Physics, 70(4), 1045–1056.

    Article  Google Scholar 

  • Haacke, E. M., Mittal, S., Wu, Z., & Neelavalli, J. (2009). Susceptibility-weighted imaging: Technical aspects and clinical applications, part 1. American Journal of Neuroradiology, 30(1), 19–30.

    Article  Google Scholar 

  • Han, X., Pearson, E., Bian, J., Cho, S., Sidky, E. Y., Pelizzari, C. A., & Pan, X. (2010). Preliminary investigation of dose allocation in low-dose cone-beam CT. In NSS/MIC: IEEE Nuclear Science Symposium & Medical Imaging Conference, Record (pp. 2051–2054). Knoxville, TN.

    Google Scholar 

  • Han, X., Pearson, E., Pelizzari, C., Al-Hallaq, H., Sidky, E. Y., Bian, J., et al. (2015). Algorithm-enabled exploration of image-quality potential of cone-beam CT in image-guided radiation therapy. Physics in Medicine & Biology, 60(12), 4601–4633.

    Article  Google Scholar 

  • Horie, N., Morikawa, M., Nozaki, A., Hayashi, K., Suyama, K., & Nagata, I. (2011). “Brush sign” on susceptibility-weighted MR imaging indicates the severity of moyamoya disease. American Journal of Neuroradiology, 32(9), 1697–1702.

    Article  Google Scholar 

  • Hoxworth, J., Lal, D., Fletcher, G., Patel, A., He, M., Paden, R., et al. (2014). Radiation dose reduction in paranasal sinus CT using model-based iterative reconstruction. AJNR American Journal of Neuroradiology, 35(4), 1–6.

    Article  Google Scholar 

  • Hua, Y., Liu, L., & Zhao, Q. (2015). Medical image quality assessment via contrast masking. In 8th International Congress on Image and Signal Processing (CISP), Shenyang, China (pp. 964–968). Piscataway, USA: IEEE.

    Google Scholar 

  • Iftekharuddin, K. M., Zheng, J., Islam, M. A., & Ogg, R. J. (2009). Fractal-based brain tumor detection in multimodal MRI. Applied Mathematics and Computation, 207(1), 23–41.

    Article  MathSciNet  MATH  Google Scholar 

  • Islam, M. K., Purdie, T. G., Norrlinger, B. D., Alasti, H., Moseley, D. J., Sharpe, M. B., et al. (2006). Patient dose from kilovoltage cone beam computed tomography imaging in radiation therapy. Medical Physics, 33(6), 1573–1582.

    Article  Google Scholar 

  • Jaffray, D. A., Siewerdsen, J. H., Wong, J. W., & Martinez, A. A. (2002). Flat-panel cone-beam computed tomography for image-guided radiation therapy. International Journal of Radiation Oncology Biology Physics, 53(5), 1337–1349.

    Article  Google Scholar 

  • Jain, A. K., Duin, R. P. W., & Mao, J. (2000). Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1), 4–37.

    Article  Google Scholar 

  • Jensen-Kondering, U., & Böhm, R. (2013). Asymmetrically hypointense veins on T2* w imaging and susceptibility-weighted imaging in ischemic stroke. World Journal of Radiology, 5(4), 156–165.

    Article  Google Scholar 

  • Jin, K., Lu, H., Su, Z., Cheng, C., Ye, J., & Qian, D. (2017). Telemedicine screening of retinal diseases with a handheld portable non-mydriatic fundus camera. BMC Ophthalmology, 17(1), 89.

    Article  Google Scholar 

  • Karimi, D., Deman, P., Ward, R., & Ford, N. (2016). A sinogram denoising algorithm for low-dose computed tomography. BMC Medical Imaging, 16(1), 11.

    Article  Google Scholar 

  • Kawaguchi, A., Sharafeldin, N., Sundaram, A., Campbell, S., Tennant, M., Rudnisky, C., Weis, E., & Damji, K. F. (2017). Tele-ophthalmology for age-related macular degeneration and diabetic retinopathy screening: A systematic review and meta-analysis. Telemedicine and E-Health.

    Google Scholar 

  • Keller, J. M., Gray, M. R., & Givens, J. A. (1985). A fuzzy k-nearest neighbor algorithm. IEEE Transactions on Systems, Man, and Cybernetics, 15(4), 580–585.

    Article  Google Scholar 

  • Khieovongphachanh, V., Hamamoto, K., & Kondo, S. (2008). Study on image quality for medical ultrasonic echo image compression by wavelet transform. In International Symposium on Communications and Information Technologies (ISCIT 2008) (pp. 160–165).

    Google Scholar 

  • Kim, S., Yoshizumi, T. T., Frush, D. P., Toncheva, G., & Yin, F. F. (2010). Radiation dose from cone beam CT in a pediatric phantom: Risk estimation of cancer incidence. AJR American Journal of Roentgenology, 194(1), 186–190.

    Article  Google Scholar 

  • Kircher, M. F., de la Zerda, A., Jokerst, J. V., Zavaleta, C. L., Kempen, P. J., Mittra, E., et al. (2012). A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nature Medicine, 18(5), 829–834.

    Article  Google Scholar 

  • Koopmans, P. J., Manniesing, R., Niessen, W. J., Viergever, M. A., & Barth, M. (2008). MR venography of the human brain using susceptibility weighted imaging at very high field strength. Magnetic Resonance Materials in Physics, Biology and Medicine, 21(1), 149–158.

    Article  Google Scholar 

  • Krupinski, E. A., & Jiang, Y. (2008). Anniversary paper: Evaluation of medical imaging systems. Medical Physics, 35(2), 645–659.

    Article  Google Scholar 

  • Lee, S. C., & Wang, Y. (1999). Automatic retinal image quality assessment and enhancement. Proceedings of SPIE Image Processing, 3661, 1581–1590.

    Google Scholar 

  • Leng, S., Yu, L., Zhang, Y., Carter, R., Toledano, A. Y., & McCollough, C. H. (2013). Correlation between model observer and human observer performance in CT imaging when lesion location is uncertain. Medical Physics, 40(8), 081908.

    Article  Google Scholar 

  • Li, T., Li, X., Wang, J., Wen, J., Lu, H., Hsieh, J., et al. (2004). Nonlinear sinogram smoothing for low-dose X-ray CT. IEEE Transactions on Nuclear Science, 51(5), 2505–2513.

    Article  Google Scholar 

  • Li, Z., Yu, L., Trzasko, J. D., Lake, D. S., Blezek, D. J., Fletcher, J. G., et al. (2014). Adaptive nonlocal means filtering based on local noise level for CT denoising. Medical Physics, 41(1), 011908.

    Article  Google Scholar 

  • Lichy, M. P., Aschoff, P., Plathow, C., Stemmer, A., Horger, W., Mueller-Horvat, C., et al. (2007). Tumor detection by diffusion-weighted MRI and ADC-mapping—Initial clinical experiences in comparison to PET-CT. Investigative Radiology, 42(9), 605–613.

    Article  Google Scholar 

  • Liu, J., He, J., Chen, H., Ma, L., Zhang, Q., Pan, L. (2012). A comparative study of assessment methods for medical image quality. In 5th International Conference on Biomedical Engineering and Informatics (BMEI), Chongqing, China (131–134). Piscataway, USA: IEEE.

    Google Scholar 

  • Manduca, A., Yu, L., Trzasko, J. D., Khaylova, N., Kofler, J. M., McCollough, C. M., et al. (2009). Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT. Medical Physics, 36(11), 4911–4919.

    Article  Google Scholar 

  • Mansouri, A., Aznaveh, A. M., Torkamani-Azar, F., & Jahanshahi, J. A. (2009). Image quality assessment using the singular value decomposition theorem. Optical Review, 16(2), 49–53.

    Article  Google Scholar 

  • Marrugoa, A. G., Millán, M. S., Šorel, M., Kotera, J., & Šroubek, F. (2015). Improving the blind restoration of retinal images by means of point-spread-function estimation assessment. In Tenth International Symposium on Medical Information Processing and Analysis (Vol. 9287, pp 92871D).

    Google Scholar 

  • Matenine, D., Goussard, Y., & Després, P. (2015). GPU-accelerated regularized iterative reconstruction for few-view cone beam CT. Medical Physics, 42(4), 1505–1517.

    Article  Google Scholar 

  • McBain, C. A., Henry, A. M., Sykes, J., Amer, A., Marchant, T., Moore, C. M., et al. (2006). X-ray volumetric imaging in image-guided radiotherapy: the new standard in on-treatment imaging. International Journal of Radiation Oncology Biology Physics, 64(2), 625–634.

    Article  Google Scholar 

  • Morita, N., Harada, M., Uno, M., Matsubara, S., Matsuda, T., Nagahiro, S., et al. (2008). Ischemic findings of T2*-weighted 3-tesla MRI in acute stroke patients. Cerebrovascular Diseases, 26(4), 367–375.

    Article  Google Scholar 

  • Mucke, J., Möhlenbruch, M., Kickingereder, P., Kieslich, P. J., Bäumer, P., Gumbinger, C., et al. (2015). Asymmetry of deep medullary veins on susceptibility weighted MRI in patients with acute MCA stroke is associated with poor outcome. PLoS ONE, 10(4), e0120801.

    Article  Google Scholar 

  • Narvekar, N. D., & Karam, L. J. (2010). An improved no-reference sharpness metric based on the probability of blur detection. In Workshop on Video Processing and Quality Metrics.

    Google Scholar 

  • Narvekar, N. D., & Karam, L. J. (2011). A no-reference image blur metric based on the cumulative probability of blur detection (CPBD). IEEE Transactions on Image Processing, 20(9), 2678–2683.

    Article  MathSciNet  MATH  Google Scholar 

  • Neitzel, U., Gunther-Kohfahl, S., Borasi, G., & Samei, E. (2004). Determination of the detective quantum efficiency of a digital X-ray detector: Comparison of three evaluations using a common image data set. Medical Physics, 31(8), 2205–2211.

    Article  Google Scholar 

  • Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences, 87(24), 9868–9872.

    Article  Google Scholar 

  • Othman, A. E., Brockmann, C., Yang, Z., Kim, C., Afat, S., Pjontek, R., et al. (2016). Impact of image denoising on image quality, quantitative parameters and sensitivity of ultra-low-dose volume perfusion CT imaging. European Radiology, 26(1), 167–174.

    Article  Google Scholar 

  • Pambrun, J., & Noumeir, R. (2013). Compressibility variations of JPEG2000 compressed computed tomography. In 35th Annual International Conference of the IEEE EMBS, Osaka, Japan (pp. 3375–3378).

    Google Scholar 

  • Paulus, J., Meier, J., Bock, R., Hornegger, J., & Michelson, G. (2010). Automated quality assessment of retinal fundus photos. International Journal of Computer Assisted Radiology and Surgery, 5(6), 557–564.

    Article  Google Scholar 

  • Ramirez-Giraldo, J. C., Trzasko, J., Leng, S., Yu, L., Manduca, A., & McCollough, C. H. (2011). Nonconvex prior image constrained compressed sensing (NCPICCS): Theory and simulations on perfusion CT. Medical Physics, 38(4), 2157–2167.

    Article  Google Scholar 

  • Reichenbach, J. R., Barth, M., Haacke, E. M., Klarhöfer, M., Kaiser, W. A., & Moser, E. (2000). High-resolution MR venography at 3.0 Tesla. Journal of Computer Assisted Tomography, 24(6), 949–957.

    Article  Google Scholar 

  • Samei, E., Ranger, N. T., Dobbins, J. T., III, & Chen, Y. (2006). Intercomparison of methods for image characterization. I. Modulation transfer function. Medical Physics, 33(5), 1454–1465.

    Article  Google Scholar 

  • Schuhbaeck, A., Achenbach, S., Layritz, C., Eisentopf, J., Hecker, F., Pflederer, T., et al. (2013). Image quality of ultra-low radiation exposure coronary CT angiography with an effective dose <0.1 mSv using high-pitch spiral acquisition and raw data-based iterative reconstruction. European Radiology, 23(3), 597–606.

    Article  Google Scholar 

  • Şevik, U., Köse, C., Berber, T., & Erdöl, H. (2014). Identification of suitable fundus images using automated quality assessment methods. Journal of Biomedical Optics, 19(4), 046006.

    Article  Google Scholar 

  • Sheikh, H. R., Sabir, M. F., & Bovik, A. C. (2006). A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Transactions on Image Processing, 15(11), 3441–3452.

    Article  Google Scholar 

  • Shepp, L. A., & Logan, B. F. (1974). The Fourier reconstruction of a head section. IEEE Transactions on Nuclear Science, 21(3), 21–43.

    Article  Google Scholar 

  • Shnayderman, A., Gusev, A., & Eskicioglu, A. M. (2006). An SVD-based grayscale image quality measure for local and global assessment. IEEE Transactions on Image Processing, 15(2), 422–429.

    Article  Google Scholar 

  • Siddon, R. L. (1985). Fast calculation of the exact radiological path for a three-dimensional CT array. Medical Physics, 12(2), 252–255.

    Article  Google Scholar 

  • Sidky, E. Y., Duchin, Y., & Pan, X. (2011). A constrained, total-variation minimization algorithm for low-intensity X-ray CT. Medical Physics, 38(S1), S117–S125.

    Article  Google Scholar 

  • Sutha, V. J., & Latha, P. (2011). Wavelet based quality enhancement for medical images. In International Conference on Recent Advancements in Electrical, Electronics and Control Engineering, Sivakasi, India (pp. 277–280). Piscataway, USA: IEEE.

    Google Scholar 

  • Szabo, T. L. (2004). Diagnostic ultrasound imaging: Inside out. Academic Press.

    Google Scholar 

  • Tang, J., Nett, B.E., & Chen, G.H. (2009). Performance comparison between total variation (TV)-based compressed sensing and statistical iterative reconstruction algorithms. Physics in Medicine & Biology, 54(19): 5781.

    Google Scholar 

  • Tian, P., Teng, I. C., May, L. D., Kurz, R., Lu, K., Scadeng, M., et al. (2010). Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal. Proceedings of the National Academy of Sciences, 107(34), 15246–15251.

    Article  Google Scholar 

  • Toet, A., & Lucassen, M. P. (2003). A new universal colour image fidelity metric. Displays, 24(4), 197–207.

    Article  Google Scholar 

  • Tsai, D. Y., Lee, Y., & Matsuyama, E. (2008). Information entropy measure for evaluation of image quality. Journal of Digital Imaging, 21(3), 338–347.

    Article  Google Scholar 

  • Vaccaro, A. R., Madigan, L., Schweitzer, M. E., Flanders, A. E., Hilibrand, A. S., & Albert, T. J. (2001). Magnetic resonance imaging analysis of soft tissue disruption after flexion-distraction injuries of the subaxial cervical spine. Spine, 26(17), 1866–1872.

    Article  Google Scholar 

  • Wagner, R. F., Metz, C. E., & Campbell, G. (2007). Assessment of medical imaging system and computer aids: A tutorial review. Academic Radiology, 14(6), 723–748.

    Article  Google Scholar 

  • Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.

    Article  Google Scholar 

  • Wang, S., Ding, Y., Dai, H., Qian, D., Yu, X., & Zhang, M. (2014). Generalized relative quality assessment scheme for reconstructed medical images. Bio-Medical Materials and Engineering, 24(6), 2865–2873.

    Google Scholar 

  • Wang, J., Li, T., Lu, H., & Liang, Z. (2006). Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography. IEEE Transactions on Medical Imaging, 25(10), 1272–1283.

    Article  Google Scholar 

  • Wang, C., Song, R., Yerfan, J., Yang, L., Wang, S., Zhang, M., et al. (2016). A comparison study of single-echo susceptibility weighted imaging and combined multi-echo susceptibility weighted imaging in visualizing asymmetric medullary veins in stroke patients. PLoS ONE, 11(8), e0159251.

    Article  Google Scholar 

  • Xu, Q., Yang, D., Tan, J., Sawatzky, A., & Anastasio, M. A. (2016). Accelerated fast iterative shrinkage thresholding algorithms for sparsity-regularized cone-beam CT image reconstruction. Medical Physics, 43(4), 1849–1872.

    Article  Google Scholar 

  • Xu, Q., Yu, H., Mou, X., Zhang, L., Hsieh, J., & Wang, G. (2012). Low-dose X-ray CT reconstruction via dictionary learning. IEEE Transactions on Medical Imaging, 31(9), 1682–1697.

    Article  Google Scholar 

  • Xue, W., Zhang, L., Mou, X., & Bovik, A. C. (2014). Gradient magnitude similarity deviation: A highly efficient perceptual image quality index. IEEE Transactions on Image Processing, 23(2), 684–695.

    Article  MathSciNet  MATH  Google Scholar 

  • Yan, H., Cervino, L., Jia, X., & Jiang, S. B. (2012a). A comprehensive study on the relationship between the image quality and imaging dose in low dose CBCT. Physics in Medicine & Biology, 57(7), 2063–2080.

    Article  Google Scholar 

  • Yan, S., Sun, J. Z., Yan, Y. Q., Wang, H., & Lou, M. (2012b). Evaluation of brain iron content based on magnetic resonance imaging (MRI): comparison among phase value, R2* and magnitude signal intensity. PLoS ONE, 7(2), e31748.

    Article  Google Scholar 

  • Yan, H., Wang, X., Shi, F., Bai, T., Folkerts, M., Cervino, L., et al. (2014). Towards the clinical implementation of iterative low-dose cone-beam CT reconstruction in image-guided radiation therapy: Cone/ring artifact correction and multiple GPU implementation. Medical Physics, 41(11), 119912.

    Google Scholar 

  • Yang, M. H., Kriegman, D. J., & Ahuja, N. (2002). Detecting faces in images: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(1), 34–58.

    Article  Google Scholar 

  • Yu, H., & Cai, Y. (2014). Contrast sensitivity function calibration based on image quality prediction. Optical Engineering, 53(11), 113107.

    Article  Google Scholar 

  • Zana, F., & Klein, J. C. (2001). Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Transactions on Image Processing, 10(7), 1010–1019.

    Article  MATH  Google Scholar 

  • Zeileis, A., Smola, A., & Hornik, K. (2004). kernlab-an S4 package for kernel methods in R. Journal of Statistical Software, 11(9), 1–20.

    Google Scholar 

  • Zhang, L., Cavaro-Ménard, C., Callet, P. L., & Ge, D. (2015). A multi-slice model observer for medical image quality assessment. In International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, Australia (pp. 1667–1671). Piscataway, USA: IEEE.

    Google Scholar 

  • Zhang, L., Cavaro-Menard, C., Callet, P. L., & Tanguy, J. Y. (2012). A perceptually relevant channelized joint observer (PCJO) for the detection-localization of parametric signals. IEEE Transactions on Medical Imaging, 31(10), 1875–1888.

    Article  Google Scholar 

  • Zhang, Y., & Chandler, D. M. (2013). No-reference image quality assessment based on log-derivative statistics of natural scenes. Journal of Electronic Imaging, 22(4), 1–23.

    Google Scholar 

  • Zhang, Y., Leng, S., Yu, L., Carter, R., & McCollough, C. H. (2014). Correlation between human and model observer performance for discrimination task in CT. Physics in Medicine & Biology, 59(13), 3389–3404.

    Article  Google Scholar 

  • Zhu, Y., & Ding, Y. (2017). Auto-optimized paralleled sinogram noise reduction method based on relative quality assessment for low-dose X-ray CT. Journal of Medical Imaging and Health Informatics, 7(1), 278–282.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Ding .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Zhejiang University Press, Hangzhou and Springer-Verlag GmbH Germany

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ding, Y. (2018). Medical Image Quality Assessment. In: Visual Quality Assessment for Natural and Medical Image. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56497-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56497-4_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56495-0

  • Online ISBN: 978-3-662-56497-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics