Advertisement

Image Quality Assessment Based on Natural Image Statistics

  • Yong Ding
Chapter

Abstract

Since human visual system (HVS) is highly adapted to extract statistical information from the viewing scenes, extracting and mathematically modeling natural scene statistics (NSS) is a promising solution for image quality assessment (IQA), as an alteration for simulating HVS properties that is discussed in the previous chapter. Depending on how statistics information is modeled, in this chapter, we conclude and introduce several representative NSS-based types of methods. The first class of methods discussed in the chapter are based on the hypothesis underlying structural similarity, which assume the natural images are highly structured, and lower-quality images fail to have the similar structural information. Then, methods with local textural information extraction aiming at utilizing the statistical distribution changing with distort to measure distortion are introduced. Subsequently, the methods based on finding hidden independent components in nature images are presented. Finally, we put forward the methods that extract quality-aware features based on multifractal analysis, which capture the statistical complexity information of images in accordance with HVS. It is really worthy to point out that exploiting the image information jointly in different domains is necessary and constructive.

Keywords

Natural image statistics Structural similarity Local texture Independent component analysis Multifractal analysis 

References

  1. Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 2037–2041.zbMATHCrossRefGoogle Scholar
  2. Allain, C., & Cloitre, M. (1991). Characterizing the lacunarity of random and deterministic fractal sets. Physical Review A, 44(6), 3552–3558.MathSciNetCrossRefGoogle Scholar
  3. Asvestas, P., Matsopoulos, G. K., & Nikita, K. S. (1998). A power differentiation method of fractal dimension estimation for 2-D signals. Journal of Visual Communication and Image Representation, 9(4), 392–400.CrossRefGoogle Scholar
  4. Balghonaim, A. S., & Keller, J. M. (1998). A maximum likelihood estimate for two-variable fractal surface. IEEE Transactions on Image Processing, 7(12), 1746–1753.CrossRefGoogle Scholar
  5. Chang, H. W., Zhang, Q. W., Wu, Q. G., & Gan, Y. (2015). Perceptual image quality assessment by independent feature detector. Neurocomputing, 151(3), 1142–1152.CrossRefGoogle Scholar
  6. Chaudhuri, B. B., & Sarker, N. (2002). Texture segmentation using fractal dimension. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(1), 72–77.CrossRefGoogle Scholar
  7. Costa, M. F., Barboni, M. T. S., & Ventura, D. F. (2011). Psychophysical measurements of luminance and chromatic spatial and temporal contrast sensitivity in duchenne muscular dystrophy. Psychology & Neuroscience, 4(1), 67–74.CrossRefGoogle Scholar
  8. Deng, R., Zhao, Y. & Ding, Y. (2017). Hierarchical feature extraction assisted with visual saliency for image quality assessment. Journal of Engineering, 4752378.Google Scholar
  9. Ding, Y., Zhang, Y., Zhang, D., & Wang, X. (2012). Weighted multi-scale structural similarity for image quality assessment with saliency-based pooling strategy. International Journal of Digital Content Technology and its Applications, 6(5), 67–78.CrossRefGoogle Scholar
  10. Ding, Y., Dai, H., & Wang, S. (2014). Image quality assessment scheme with topographic independent components analysis for sparse feature extraction. Electronics Letters, 50(7), 509–510.CrossRefGoogle Scholar
  11. Ding, Y., Zhang, H., Luo, X. H., & Dai, H. (2015). Blind image quality assessment based on fractal description of natural scenes. Electronics Letters, 51(4), 338–339.CrossRefGoogle Scholar
  12. Ding, Y., Chen, H. D., Zhao, Y., & Zhu, Y. F. (2016a). No-reference image quality assessment based on Gabor filters and nonlinear feature extraction. International Journal of Digital Content Technology and its Applications, 10(5), 100–109.Google Scholar
  13. Ding, Y., Li, N., Zhao, Y., & Huang, K. (2016b). Image quality assessment method based on non-linear feature extraction in kernel space. Frontiers of Information Technology & Electronic Engineering, 17(10), 1008–1017.CrossRefGoogle Scholar
  14. Ding, Y., Zhao, X. Y., Zhang, Z., & Dai, H. (2017). Image quality assessment based on multi-order local features description, modeling and quantification. IEICE Transactions on Information and Systems, E, 100D(6), 1303–1315.CrossRefGoogle Scholar
  15. Du, S., Yan, Y., & Ma, Y. (2016). Blind image quality assessment with the histogram sequences of high-order local derivative patterns. Digital Signal Processing, 55, 1–12.CrossRefGoogle Scholar
  16. Engelke, U., Nguyen, V. X., & Zepernick, H.-J. (2008). Regional attention to structural degradations for perceptual image quality metric design. In 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 869–872.Google Scholar
  17. Eskicioglu, A. M., & Fisher, P. S. (1995). Image quality measures and their performance. IEEE Transactions on Communications, 43(12), 2959–2965.CrossRefGoogle Scholar
  18. Fan, K. C., & Hung, T. Y. (2014). A novel local pattern descriptor local vector pattern in high-order derivative space for face recognition. IEEE Transactions on Image Processing, 23(7), 2877–2891.MathSciNetzbMATHCrossRefGoogle Scholar
  19. Field, D. J. (1987). Relations between the statistics of natural images and the response properties of cortical cells. Journal of the Optical Society of America A, 4(12), 2379–2394.CrossRefGoogle Scholar
  20. Fränti, P. (1998). Blockwise distortion measure for statistical and structural errors in digital images. Signal Processing: Image Communication, 13(2), 89–98.Google Scholar
  21. Geng, X., Shen, L., Li, K., & An, P. (2016). A stereoscopic image quality assessment model based on independent component analysis and binocular fusion property. Signal Processing Image Communication, 2017(52), 54–63.Google Scholar
  22. Ghosh, K., Sarkar, S., & Bhaumik, K. (2007). Understanding image structure from a new multi-scale representation of higher order derivative filters. Image and Vision Computing, 25(8), 1228–1238.CrossRefGoogle Scholar
  23. Goodman, J. S., & Pearson, D. E. (1979). Multidimensional scaling of multiply-impaired television pictures. IEEE Transactions on Systems, Man, and Cybernetics, 9(6), 353–356.CrossRefGoogle Scholar
  24. Gu, K., Zhou, J., Qiao, J.-F., Zhai, G., Lin, W., & Bovik, A. C. (2017). No-reference quality assessment of screen content pictures. IEEE Transactions on Image Processing, 26(8), 4005–4018.MathSciNetCrossRefGoogle Scholar
  25. Guo, Z., Zhang, L., & Zhang, D. (2010). A completed modeling of local binary pattern operator for texture classification. IEEE Transactions on Image Processing, 19(6), 1657–1663.MathSciNetzbMATHCrossRefGoogle Scholar
  26. Guo, W., & Zong, Q. (2012). A blind separation method of instantaneous speech signal via independent components analysis. In International Conference on Consumer Electronics, 3001–3004.Google Scholar
  27. Han, X.-H., Chen, Y.-W., & Gang, X. (2015). High-order statistics of weber local descriptors for image representation. IEEE Transactions on Cybernetics, 45(6), 1180–1193.CrossRefGoogle Scholar
  28. Henriksson, L., Hyvärinen, A., & Vanni, S. (2009). Representation of cross frequency spatial phase relationships in human visual cortex. Journal of Neuroscience, 29(45), 14342–14351.CrossRefGoogle Scholar
  29. Huang, L., Cui, X., Lin, J., & Shi, Z. (2011). A new reduced-reference image quality assessment method based on SSIM. Applied Mechanics and Materials, 55, 31–36.Google Scholar
  30. Huang, D., Zhu, C., Wang, Y., & Chen, L. (2014). HSOG: A novel local image descriptor based on histograms of the second-order gradients. IEEE Transactions on Image Processing, 23(11), 4680–4695.MathSciNetzbMATHCrossRefGoogle Scholar
  31. Humeau, A., Buard, B., Mahé, G., Chapeau-Blondeau, F., Rousseau, D., & Abraham, P. (2010). Multifractal analysis of heart rate variability and laser doppler flowmetry fluctuations: comparison of results from different numerical methods. Physics in Medicine & Biology, 55(20), 6279–6297.CrossRefGoogle Scholar
  32. Hyvärinen, A., Hoyer, P. O., & Inki, M. (2001). Topographic independent component analysis. Neural Computation, 13(7), 1527–1558.zbMATHCrossRefGoogle Scholar
  33. Hyvärinen, A., Hurri, J., & Hoyer, P. O. (2009). Natural image statistics: A probabilistic approach to early computational vision. London: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  34. Ida, T., & Sambonsugi, Y. (1998). Image segmentation and contour detection using fractal coding. IEEE Transactions on Circuits System Video Technology, 8(8), 968–977.CrossRefGoogle Scholar
  35. Jain, R., Kasturi, R., & Schunck, B. G. (1995). Machine Vision. New York: McGraw-Hill.Google Scholar
  36. Jiao, S., Qi, H., Lin, W., & Shen, W. (2013). Fast and efficient blind image quality index in spatial domain. Electronic Letters, 49(18), 1137–1138.CrossRefGoogle Scholar
  37. Jähne, B., Haubecker, H., & Geibler, P. (1999). Handbook of computer vision and applications. New York: Academic.Google Scholar
  38. Kasturiwate, H. P., & Deshmukh, C. N. (2009). Quality assessment of ICA for ECG signal analysis. In International Conference on Emerging Trends in Engineering and Technology, 73–75.Google Scholar
  39. Kovesi, P. (1999). Image features from phase congruency. Journal of Computer Vision Research, 1(3), 1–26.Google Scholar
  40. Kruger, N., Janssen, P., Kalkan, S., Lappe, M., Leonardis, A., Piater, J., et al. (2013). Deep hierarchies in the primate visual cortex: What can we learn for computer vision? IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1847–1871.CrossRefGoogle Scholar
  41. Larson, E. C., & Chandler, D. M. (2008). Unveiling relationships between regions of interest and image fidelity metrics. Proceeding of SPIE 6822, Visual Communications and Image Processing 2008, 68222A.Google Scholar
  42. Larson, E. C., Vu, C. T., & Chandler, D. M. (2008). Can visual fixation patterns improve image fidelity assessment? 15th IEEE International Conference on Image Processing, 3: 2572–2575.Google Scholar
  43. Lei, Z., Liao, S., Pietikäinen, M., & Li, S. Z. (2011). Face recognition by exploring information jointly in space, scale and orientation. IEEE Transactions on Image Processing, 20(1), 247–256.MathSciNetCrossRefGoogle Scholar
  44. Li, C. F., & Bovik, A. C. (2009). Three-component weighted structural similarity index. Proceedings of SPIE, 7242, image quality and system performance VI: 72420Q.Google Scholar
  45. Li, J., Du, Q., & Sun, C. (2009). An improved box-counting method for image fractal dimension estimation. Pattern Recognition, 42(11), 2460–2469.zbMATHCrossRefGoogle Scholar
  46. Li, J., Duan, L. Y., Chen, X., Huang, T., & Tian, Y. (2015). Finding the secret of image saliency in the frequency domain. IEEE Transactions Pattern Analysis and Machine Intelligence, 37(12), 2428–2440.CrossRefGoogle Scholar
  47. Liu, S., & Chang, S. (1997). Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification. IEEE Transactions on Image Processing, 6(8), 1176–1184.CrossRefGoogle Scholar
  48. Lin, K. H., Lam, K. M., & Siu, W. C. (2001). Locating the eye in human face images using fractal dimensions. IEEE Proceedings on Vision, Image and Signal Processing, 148(6), 413–421.CrossRefGoogle Scholar
  49. Liu, C., & Yang, J. (2009). ICA color space for pattern recognition. IEEE Transactions on Neural Networks, 20(2), 248–257.CrossRefGoogle Scholar
  50. Liu, D., Sun, D. M., & Qiu, Z. D. (2010). Feature selection for fusion of speaker verification via Maximum Kullback-Leibler distance. Signal Processing (ICSP), 2010 IEEE 10th International Conference on, Beijing, 565–568.Google Scholar
  51. Loh, N., Hampton, C., Martin, A., Starodub, D., Sierra, R., Barty, A., et al. (2012). Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight. Nature, 486(7404), 513–517.CrossRefGoogle Scholar
  52. Luo, Y. T., Zhao, L. Y., Zhang, B., Jia, W., Xue, F., Lu, J. T., et al. (2016). Local line directional pattern for palmprint recognition. Pattern Recognition, 50, 26–44.CrossRefGoogle Scholar
  53. Mancas-Thillou, C., & Gosselin, B. (2006). Character segmentation-by-recognition using log-Gabor filters. 18th International Conference on Pattern Recognition, 901–904.Google Scholar
  54. Mandelbrot, B. B. (1967). How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, 156(3775), 636–638.Google Scholar
  55. Mandelbrot, B. B., & Wheeler, J. A. (1983). The fractal geometry of nature. Journal of the Royal Statistical Society, 147(4), 468.Google Scholar
  56. Marr, D., & Hildreth, E. (1980). Theory of edge detection. Proceedings of the Royal Society of London. Series B, Biological Sciences , 207(1167), 187–217.Google Scholar
  57. Mendi, E. (2015). Image quality assessment metrics combining structural similarity and image fidelity with visual attention. Journal of Intelligent & Fuzzy Systems, 28(3), 1039–1046.Google Scholar
  58. Meyer-Bäse, A., Auer, D., & Wismueller, A. (2003). Topographic independent component analysis for fMRI signal detection. Proceedings of the International Joint Conference on Neural Networks, 1(7), 601–605.Google Scholar
  59. Mirny, L. A. (2011). The fractal globule as a model of chromatin architecture in the cell. Chromosome Research, 19(1), 37–51.CrossRefGoogle Scholar
  60. Mittal, A., Moorthy, A. K., & Bovik, A. C. (2012). No-reference image quality assessment in the spatial domain. IEEE Transactions on Image Processing, 21(12), 4695–4708.MathSciNetzbMATHCrossRefGoogle Scholar
  61. Miyabe, S., Juang, B. H., Saruwatari, H., & Shikano, K. (2009). Kernel-based nonlinear independent component analysis for underdetermined blind source separation. In IEEE International Conference on Acoustics, 1641–1644.Google Scholar
  62. Moorthy, A. K., & Bovik, A. C. (2009). Visual importance pooling for image quality assessment. IEEE Journal of Selected Topics in Signal Processing, 3(2), 193–201.CrossRefGoogle Scholar
  63. Moorthy, A. K., & Bovik, A. C. (2011). Blind image quality assessment: From natural scene statistics to perceptual quality. IEEE Transactions on Image Processing, 20(12), 3350–3364.MathSciNetzbMATHCrossRefGoogle Scholar
  64. Morrone, M. C., Ross, J., Burr, D. C., & Owens, R. (1986). Mach bands are phase dependent. Nature, 324(6049), 250–253.CrossRefGoogle Scholar
  65. Morrone, M. C., & Burr, D. C. (1988). Feature detection in human vision: A phase-dependent energy model. Proceedings of the Royal Society of London. Series B, Biological Sciences, 235(1280), 221–245.Google Scholar
  66. Murala, S., Maheshwari, R. P., & Balasubramanian, R. (2012). Local tetra patterns: A new feature descriptor for content-based image retrieval. IEEE Transactions on Image Processing, 21(5), 2874–2886.MathSciNetzbMATHCrossRefGoogle Scholar
  67. Najemnik, J., & Geisler, W. S. (2005). Optimal eye movement strategies in visual search. Nature, 434, 387–391.CrossRefGoogle Scholar
  68. Neil, G., & Curtis, K. M. (1997). Shape recognition using fractal dimension. Pattern Recognition, 30(12), 1957–1969.CrossRefGoogle Scholar
  69. Nielsen, F., Hyvrinen, A., Hurri, J., & Hoyer, P. O. (2009). Natural image statistics: A probabilistic approach to early computational vision. New York: Springer-Verlag.zbMATHGoogle Scholar
  70. Ojala, T., Pietikäinen, M., & Harwood, D. (1996). A comparative study of texture measures with classification based on feature distributions. Pattern Recognition, 29(1), 51–59.CrossRefGoogle Scholar
  71. Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 971–987.zbMATHCrossRefGoogle Scholar
  72. Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583), 607–609.CrossRefGoogle Scholar
  73. Oszust, M. (2016). Full-reference image quality assessment with linear combination of genetically selected quality measures. PLoS ONE, 11(6), e0158333.CrossRefGoogle Scholar
  74. Peitgen, H. O., Jürgens, H., & Saupe, D. (2004). Chaos and fractals: New frontiers of science. Mathematical Gazette, 79(484), 241–255.zbMATHGoogle Scholar
  75. Pentland, A. P. (1984). Fractal-based description of natural scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6), 661–674.CrossRefGoogle Scholar
  76. Privitera, C. M., & Stark, L. W. (2000). Algorithms for defining visual regions-of-interest: comparison with eye fixations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(9), 970–982.CrossRefGoogle Scholar
  77. Provata, A., & Katsaloulis, P. (2010). Hierarchical multifractal representation of symbolic sequences and application to human chromosomes. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 81(2 Pt 2), 026102.CrossRefGoogle Scholar
  78. Rajashekar, U., Cormack, L. K., & Bovik, A. C. (2003). Image features that draw fixations. Proceedings 2003 International Conference on Image Processing, Barcelona, Spain.Google Scholar
  79. Russell, D. A., Hanson, J. D., & Ott, E. (1980). Dimension of strange attractors. Physical Review Letters, 45(14), 1175–1178.MathSciNetCrossRefGoogle Scholar
  80. Saad, M., Bovik, A. C., & Charrier, C. (2012). Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Transactions on Image Processing, 21(8), 3339–3352.MathSciNetzbMATHCrossRefGoogle Scholar
  81. Sampat, M. P., Wang, Z., Gupta, S., Bovik, A. C., & Markey, M. K. (2009). Complex wavelet structural similarity: A new image similarity index. IEEE Transactions on Image Processing, 18(11), 2385–2401.MathSciNetzbMATHCrossRefGoogle Scholar
  82. Sarker, N., & Chaudhuri, B. B. (1994). An efficient differential box-counting approach to compute fractal dimension of image. IEEE Transactions on Systems Man and Cybernetics, 24(1), 115–120.CrossRefGoogle Scholar
  83. Sheikh, H. R., & Bovik, A. C. (2006). Image information and visual quality. IEEE Transactions on Image Processing, 15(2), 430–444.CrossRefGoogle Scholar
  84. Sheikh, H. R., Bovik, A. C., & Cormack, L. (2005). No-reference quality assessment using natural scene statistics: JPEG2000. IEEE Transactions on Image Processing, 14(11), 1918–1927.CrossRefGoogle Scholar
  85. Simoncelli, E. P. (1997). Statistical models for images: compression, restoration and synthesis. Conference Record of the Asilomar Conference on Signals, Systems and Computers, 1, 673–678.Google Scholar
  86. Simoncelli, E. P., & Olshausen, B. A. (2001). Natural image statistics and neural representation. Annual Review of Neuroscience, 24(1), 1193–1216.CrossRefGoogle Scholar
  87. Srivastava, A., Lee, A. B., Simoncelli, E. P., & Zhu, S. C. (2003). On advances in statistical modeling of natural images. Journal of mathematical imaging and vision, 18(1), 17–33.MathSciNetzbMATHCrossRefGoogle Scholar
  88. Stosic, T., & Stosic, B. D. (2006). Multifractal analysis of human retinal vessels. IEEE Transactions on Medical Imaging, 25(8), 1101–1107.zbMATHCrossRefGoogle Scholar
  89. Tan, X., & Triggs, B. (2010). Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Transactions on Image Processing, 19(6), 1635–1650.MathSciNetzbMATHCrossRefGoogle Scholar
  90. Wainwright, M. J., & Simoncelli, E. P. (1999). Scale mixtures of Gaussians and the statistics of natural images. Gayana, 68(2), 609–610.Google Scholar
  91. Wang, Z. (2001). Rate scalable Foveated image and video communications. Ph.D. Dissertation, Department of Electrical and Computer Engineering, University. Texas at Austin, Austin, TX.Google Scholar
  92. Wang, Z., & Bovik, A. C. (2002). A universal image quality index. IEEE Signal Processing Letters, 9(3), 81–84.CrossRefGoogle Scholar
  93. Wang, Z., & Bovik, A. C. (2006). Modern image quality assessment. Synthesis Lectures on Image, Video, and Multimedia Processing, 2(1), 1–156.CrossRefGoogle Scholar
  94. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.CrossRefGoogle Scholar
  95. Wang, L., & He, D.-C. (1990). Texture classification using texture spectrum. Pattern Recognition, 23(8), 905–910.CrossRefGoogle Scholar
  96. Wang, Z., & Li, Q. (2011). Information content weighting for perceptual image quality assessment. IEEE Transactions on Image Processing, 20(5), 1185–1198.MathSciNetzbMATHCrossRefGoogle Scholar
  97. Wang, W., Li, J., Huang, F., & Feng, H. (2008). Design and implementation of log-Gabor filter in fingerprint image enhancement. Pattern Recognition Letters, 29(3), 301–308.CrossRefGoogle Scholar
  98. Wang, Z., & Simoncelli, E. P. (2005). Reduced-reference image quality assessment using a wavelet-domain natural image statistic model. Proceedings of the SPIE, 5666, 149–159.CrossRefGoogle Scholar
  99. Wang, Z., Simoncelli, E. P., & Bovik, A. C. (2003). Multi-scale structural similarity for image quality assessment. Conference Record of the Asilomar Conference on Signals, Systems and Computers, 2, 1398–1402.Google Scholar
  100. Wei, X. & Li, C. (2010). Visual saliency detection based on topographic independent component analysis. Signal Processing (ICSP), 2010 IEEE 10th International Conference on, Beijing, 1244–1247.Google Scholar
  101. Wu, Q., Li, H., Meng, F., Ngan, K. N., Luo, B., Huang, C., et al. (2016). Blind image quality assessment based on multichannel feature fusion and label transfer. IEEE Transactions on Circuits and Systems for Video Technology, 26(3), 425–440.CrossRefGoogle Scholar
  102. Yan, Y. P., Du, S. L., Zhang, H. J., & Ma, Y. D. (2016). When spatial distribution unites with spatial contrast: An effective blind image quality assessment model. IET Image Processing, 10(12), 1017–1028.CrossRefGoogle Scholar
  103. Yu, L., Zhang, D., Wang, K., & Yang, W. (2005). Coarse iris classification using box-counting to estimate fractal dimensions. Pattern Recognition, 38(11), 1791–1798.CrossRefGoogle Scholar
  104. Yu, X., Hu, D., & Xu, J. (2014). Kernel independent component analysis. In Blind source separation: Theory and applications (pp. 145–152). Singapore: John Wiley and Sons.Google Scholar
  105. Yuan, F. N. (2014). Rotation and scale invariant local binary pattern based on high order directional derivatives for texture classification. Digital Signal Processing, 26(1), 142–152.CrossRefGoogle Scholar
  106. Yuan, J., Wang, D., & Cheriyadat, A. M. (2015). Factorization-based texture segmentation. IEEE Transactions on Image Processing, 24(11), 3488–3497.MathSciNetCrossRefGoogle Scholar
  107. Zhang, Y., & Chandler, D. M. (2013). No-reference image quality assessment based on log-derivative statistics of natural scenes. Journal of Electronic Imaging, 22(4), 451–459.Google Scholar
  108. Zhang, H., Ding, Y., Wu, P. W., Bai, X. T., & Huang, K. (2014). Image quality assessment by quantifying discrepancies of multifractal spectrums. IEICE Transactions on Information and Systems, E, 97D(9), 2453–2460.CrossRefGoogle Scholar
  109. Zhang, D., Ding, Y., & Zheng, N. (2012). Nature science statistics approach based on ICA for no-reference image quality assessment. Procedia Engineering, 29(4), 3589–3593.CrossRefGoogle Scholar
  110. Zhang, H., Gao, W., Chen, X., & Zhao, D. (2005). Learning informative features for spatial histogram-based object detection. Proceedings IEEE International Joint Conference on Neural Networks, 3, 1806–1811.Google Scholar
  111. Zhang, B., Gao, Y., Zhao, S., & Liu, J. (2010). Local derivative pattern versus local binary pattern: Face recognition with high-order local pattern descriptor. IEEE Transactions on Image Processing, 19(2), 533–544.MathSciNetzbMATHCrossRefGoogle Scholar
  112. Zhang, M., Mou, X., Fujita, H., Zhang, L., Zhou, X., & Xue, W. (2013a). Local binary pattern statistics feature for reduced reference image quality assessment. Proceedings of SPIE, 8660(3), 872–886.Google Scholar
  113. Zhang, M., Muramatsu, C., Zhou, X., Hara, T., & Fujita, H. (2015). Blind image quality assessment using the joint statistics of generalized local binary pattern. IEEE Signal Processing Letters, 22(2), 207–210.CrossRefGoogle Scholar
  114. Zhang, F., & Roysam, B. (2016). Blind quality metric for multidistortion images based on cartoon and texture decomposition. IEEE Signal Processing Letters, 23(9), 1265–1269.CrossRefGoogle Scholar
  115. Zhang, L., Zhang, L., Mou, X., & Zhang, D. (2011). FSIM: A feature similarity index for image quality assessment. IEEE Transactions on Image Processing, 20(8), 2378–2386.MathSciNetzbMATHCrossRefGoogle Scholar
  116. Zhang, L., Tong M. H., Marks, T. K., Shan, H., & Cottrell, G. W. (2008). SUN: A Bayesian framework for saliency using natural statistics. Journal of Vision, 8(7):32, 1–20.Google Scholar
  117. Zhang, M., Xie, J., Zhou, X., & Fujita, H. (2013b). No reference image quality assessment based on local binary pattern statistics. 2013 Visual Communications and Image Processing (VCIP), Kuching, 1–6.Google Scholar
  118. Zhao, Y., Ding, Y., & Zhao, X. Y. (2016). Image quality assessment based on complementary local feature extraction and quantification. Electronics Letters, 52(22), 1849–1851.CrossRefGoogle Scholar
  119. Zhou, W. X. (2008). Multifractal detrended cross-correlation analysis for two nonstationary signals. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 77(6), 066211.CrossRefGoogle Scholar
  120. Zhou, W. J., Yu, L., Qiu, W. W., Zhou, Y., & Wu, M. W. (2017). Local gradient patterns (LGP): An effective local-statistical-feature extraction scheme for no-reference image quality assessment. Information Sciences, 397, 1–14.CrossRefGoogle Scholar

Copyright information

© Zhejiang University Press, Hangzhou and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Zhejiang UniversityHangzhouChina

Personalised recommendations