Skip to main content

Technologien und Materialien für mikrofluidische Systeme

  • Chapter
  • First Online:
Mikrofluidische Separationsverfahren und -systeme
  • 2138 Accesses

Zusammenfassung

Bei der Erschließung neuer Gebiete greift man gern auf Bekanntes und Bewährtes zurück. So wurden erste mikrofluidische Systeme in klassischer Dünnfilmtechnik gefertigt – ähnlich wie beim Aufkommen der Mikrosystemtechnik Prozesse der Halbleitertechnologie adaptiert wurden. Dieser konventionelle dünnfilmtechnische Fertigungsansatz zeichnet sich durch eine hohe Präzision sowie eine exzellente Reproduzierbarkeit aus. Die in der Mikrofluidik genutzten Fertigungsverfahren fasst man unter dem Begriff Softlithografie zusammen, da man zur Herstellung von Replika der Ursprungsform elastomerartige Masterformen und Stempel in Verbindung mit Fotomasken wie bei der konventionellen Fotolithografie nutzt. Replikationsverfahren zur Herstellung fluidischer Mikrostrukturen umfassen Abformen, Heißprägen und Spritzgießen. Daneben sind verschiedene Drucktechniken verfügbar wie Mikrokontaktdrucken, Nanoimprint und Schablonenlithografie. Dieses Kapitel erläutert Technologien und nennt Materialien zur Fertigung mikrofluidischer Systeme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 39.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel 5

  1. A. K. Au, W. Lee, A. Folch: Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices. Lab Chip Vol. 14, pp. 1294-1301, 2014 http://pubs.rsc.org/en/content/articlelanding/2014/lc/c3lc51360b#!divAbstract

  2. E. W. Becker, W. Ehrfeld, D. Münchmeyer, H. Betz, A. Heuberger, S. Pogratz, W. Glashauser, H. J. Michel, R. v. Siemens: Production of separation-nozzle systems for uranium enrichment by a combination of X-ray lithography and galvanoplastics. Naturwissenschaften Vol. 69, pp. 520-523, 1982

    Google Scholar 

  3. H. Becker, M. Arundell, A. Harnisch, D. Hülsenberg: Chemical analysis in photostructurable glass chips. Sensors and Actuators B: Chemical Vol. 86, pp. 271-279, 2002

    Google Scholar 

  4. H. Becker, C. Gärtner: Microfluidics and the life sciences. Science Progress Vol. 95, pp. 175-198, 2012

    Google Scholar 

  5. S. Büttgenbach: Mikromechanik: Einführung in Technologie und Anwendungen. Teubner, 1991

    Google Scholar 

  6. E. Carrilho, A. W. Martinez, G. M. Whitesides: Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Analytical Chemistry Vol. 81, pp. 7091-7095, 2009

    Google Scholar 

  7. C. F. Carlborg, T. Haraldsson, K. Öberg, M. Malkoch, W. van der Wijngaart: Beyond PDMS: off-stoichiometry thiol-ene (OSTE) based soft lithography for rapid prototyping of microfluidic devices. Lab Chip Vol. 11, pp. 3136-3147, 2011

    Google Scholar 

  8. C.F. Carlborg, F. Moraga, F. Saharil, W. van der Wijngaart, T. Haraldsson: Rapid permanent hydrophilic and hydrophobic patterning of polymer surfaces via off-stochiometry thiol-ene (OSTE) photografting. Proceedings of the 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences μTAS 2012, pp. 677-679, 2012

    Google Scholar 

  9. S.-S. Chen, Ch.-W. Hu, I.-F. Yu, Y.-Ch. Liao, J.-T. Yang: Origami paper-based fluidic batteries for portable electrophoretic devices. Lab Chip Vol. 14, pp. 2124-2139, 2014

    Google Scholar 

  10. Y. J. Chuang, F.-G. Tseng, J.-H. Cheng, W.-K. Lin: A novel fabrication method of embedded micro-channels by using SU-8 thick-film photoresists. Sensors and Actuators A: Physical Vol. 103, pp. 64-69, 2003

    Google Scholar 

  11. R. Courson, S. Cargou, V. Conédéra, M. Fouet, A. M. Gué: Low cost integration of multilevel lab-on-a-chip using a new generation of dry film photoresists. Conference CD Smart Systems Integration 2014

    Google Scholar 

  12. J. C. McDonald, G. M. Whitesides: Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices. Accounts of Chemical Research Vol. 35, pp. 481-489, 2002

    Google Scholar 

  13. D. C. Duffy, J. Cooper McDonald, O. J. A. Schueller, G. M. Whitesides: Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Analytical Chemistry Vol. 70, pp. 4974-4984, 1998

    Google Scholar 

  14. M. Dusseiller, ETH Zürich, Schweiz. Urheberrecht: creative commons www.dusseiller.ch/mis_wiki/index.php?title=P2_FS10_Gruppe_A:

  15. P. Eberhardt: Entwicklung eines mikrofluidischen Systems zur Handhabung von Magnetpartikeln. Dissertation Universität Karlsruhe (TH), Fakultät für Maschinenbau, KIT Scientific Publishing, 2008, ISBN: 978-3-86644-290-0

    Google Scholar 

  16. T. L. Edwards, S. K. Mohanty, R. K. Edwards, C. Thomas, A. B. Frazier: Rapid tooling using SU-8 for injection molding microfluidic components. Proc. SPIE Vol. 4177, pp. 82-89, Microfluidic Devices and Systems III, Eds.: C.H. Mastrangelo, H. Becker, 2000

    Google Scholar 

  17. J. L. Erkal, A. Selimovic, B. C. Gross, S. Y. Lockwood, E. L. Walton, S. McNamara, R. S. Martin, D. M. Spence: 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab Chip Vol. 14, pp. 2023-2032

    Google Scholar 

  18. M. Focke, D. Kosse, C. Müller, H. Reinecke, R. Zengerle, F. von Stetten: Lab-on-a-Foil: microfluidics on thin and flexible films. Lab Chip Vol. 10, pp. 1365-1386, 2010

    Google Scholar 

  19. S. Franssila: Introduction to Microfabrication, 21. Deep Reactive Ion Etching. John Wiley & Sons, 2nd Edition, https://doi.org/10.1002/9781119990413.ch21, 2010

  20. H. Frey, G. Kienel: Dünnschichttechnologie. VDI-Verlag GmbH, 1987

    Google Scholar 

  21. H. Dittrich, M. Heckele, W. K. Schomburg: Werkzeugentwicklung für das Heißprägen beidseitig mikrostrukturierter Formteile. Forschungszentrum Karlsruhe, Wissenschaftliche Berichte FZKA 7058, http://bibliothek.fzk.de/zb/berichte/FZKA7058.pdf, 2006

  22. N. Gottschlich, H. Jehle: Kunststoffe für Microarrays und Mikrofluidik. Laborpraxis online, 2004

    Google Scholar 

  23. B. C. Gross, J. L. Erkal, S. Y. Lockwood, C. Chen, D. M. Spence: Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Analytical Chemistry Vol. 86, pp. 3240-3253, 2014

    Google Scholar 

  24. A. V. Govindarajan S. Ramachandran, G. D. Vigil, P. Yager, K. F. Böhringer: A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami. Lab Chip Vol. 12, pp. 174-181, 2012

    Google Scholar 

  25. K. Herold, A. Rasooly: Lab on a chip technology, Volume 1: Fabrication and microfluidics. Caister Academic Press, 2009, ISBN 1-904455-46-8

    Google Scholar 

  26. A. Heuberger (Hrsg.): Mikromechanik. Mikrofertigung mit Methoden der Halbleitertechnologie. Berlin: Springer, 1989

    Google Scholar 

  27. B. H. Jo, L. M. van Lerberghe, K. M. Motsegood, D. J. Beebe: Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J. of Microelectromechanical Systems Vol. 9, pp. 76-81, 2000

    Google Scholar 

  28. J. M. Kohler, T. Mejevaia, H. P. Saluz (Eds.): Microsystem Technology: A Powerful Tool for Biomolecular Studies. Birkhauser Verlag, Boston, 1999; Vol. 10, 1999

    Google Scholar 

  29. G. T. A. Kovacs: Micromachined Transducers Sourcebook. McGraw-Hill, New York, 1998

    Google Scholar 

  30. Homepage Lab-on-Foil-Projekt, 7. EU-Rahmenprogramm: www.labonfoil.eu

  31. H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, P. Vettiger: SU-8: A low-cost negative resist for MEMS. J. of Micromechanics and Microengineering Vol. 7, pp. 121-124, 1997

    Google Scholar 

  32. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides: Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical Review Vol. 105, pp. 1103-1169, 2005

    Google Scholar 

  33. Y. Lu, W. Shi, L. Jiang, J. Qin, B. Lin: Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Short Communications Vol. 30, pp. 1497-1500, 2009

    Google Scholar 

  34. H. Lui, R. M. Crooks: Three-dimensional paper microfluidic devices assembled using the principles of origami. J. of the American Chemical Society Vol. 133, pp. 17564-17566, 2011

    Google Scholar 

  35. A. W. Martinez, S. T. Phillips, M. J. Butte, G. M. Whitesides: Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angewandte Chemie International Edition Vol. 46, pp. 1318-1320, 2007

    Google Scholar 

  36. A. W. Martinez, S. T. Phillips, G. M. Whitesides: Three-dimensional microfluidic devices fabricated in layered paper and tape. PNAS Vol. 105, pp. 19606-19611, 2008

    Google Scholar 

  37. A. W. Martinez, S. T. Phillips, B. J. Wiley, M. Gupta, G. M. Whitesides: FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip Vol. 8, pp. 2146-2150, 2008

    Google Scholar 

  38. A.W. Martinez, S.T. Phillips, G. M. Whitesides: Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices. Analytical Chemistry Vol. 82, No. 1, pp. 3-10, 2010

    Google Scholar 

  39. W. Menz, P. Bley: Mikrosystemtechnik für Ingenieure. Weinheim: VCH Verlagsgesellschaft 1993

    Google Scholar 

  40. Firmenwebsite Mercene Labs AB http://www.mercenelabs.com/

  41. P. M. van Midwoud, A. Janse, M. T. Merema, G. M. Groothuis, E. Verpoorte: Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models. Analytical Chemistry Vol. 84, Issue 9, pp. 3938-3944, 2012

    Google Scholar 

  42. P. M. van Midwoud, A. Janse, M. T. Merema, G. M. Groothuis, E. Verpoorte: Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models. Analytical Chemistry Vol. 84, Issue 9, pp. 3938-3944, 2012

    Google Scholar 

  43. N.-T. Nguyen: Mikrofluidik – Entwurf, Herstellung und Charakterisierung. Teubner Wiesbaden, 2004 ISBN -63-519-00466

    Google Scholar 

  44. Z. Nie, C. A. Nijhuis, J. Gong, X. Chen, A. Kumachev, A. W. Martinez, M. Narovlyansky, G. M. Whitesides: Electrochemical sensing in paper-based microfluidic devices. Lab Chip Vol. 10, pp. 477-483, 2010

    Google Scholar 

  45. A. Oerke, S. Büttgenbach, A. Dietzel: Micro molding for double-sided micro structuring of SU-8 resist. Microsystem Technologies Vol. 20, pp. 593-598, 2014

    Google Scholar 

  46. M. Ohring: Materials Science of Thin Films. Academic Press, 2001

    Google Scholar 

  47. ORDYL SY 300, Produktdatenblatt, Edition 2003; siehe auch: http://cmi.epfl.ch/packaging/files/Laminators/ORDYL.pdf, Ordyl dry film alpha 900

  48. L. Petrova-Belova: Mehrlagige mikrofluidische Systeme aus Polymeren zur zweidimensionalen Kapillarelektrophorese. Dissertation, Karlsruher Institut für Technologie, KIT Scientific Publishing ISBN: 3866445180, 2010

    Google Scholar 

  49. D. Qin, Y. Xia, G. Whitesides: Soft lithography for micro- and nanoscale patterning. Nature Protocols Vol. 5, No. 3, pp. 491-502, 2010

    Google Scholar 

  50. G. S. Rajan, G. S. Sur, J. E. Mark, D. W. Schaefer, G. Beaucage: Preparation and application of some unusually transparent poly(dimethylsiloxane) nanocomposites. J. of Polymer Science B Vol. 41, pp. 1897-1901, 2003

    Google Scholar 

  51. S. Z. Razzacki, P. K. Thwar, M. Yang, V. M. Ugaz, M. A. Burns: Integrated microsystems for controlled drug delivery. Adv. Drug Delivery Rev. Vol. 56, pp. 185-198, 2004

    Google Scholar 

  52. K. J. Regehr, M. Domenech, J. T. Koepsel, K. C. Carver, S. J. Ellison-Zelski, W. L. Murphy, L. A. Schuler, E. T. Alarid, D. J. Beebe: Biological implications of polydimethylsiloxanebased microfluidic cell culture. Lab Chip Vol. 9, pp. 2132-2139, 2009

    Google Scholar 

  53. M. Rosenauer, J. Stampfl, M. Vellekoop: A novel optofluidic evanescent waveguide sensor system for fluorescence spectroscopy fabricated by micro-stereolithography. Conference Proceedings Transducers 2009, pp. 718-721, ISBN: 978-1-4244-4193-8, 2009

    Google Scholar 

  54. O. Röting, W. Röpke, H. Becker, C. Gärtner: Polymer microfabrication technologies. Microsystem Technologies Vol. 8, pp. 32-36, 2002

    Google Scholar 

  55. E. Roy, M. Geissler, J.-Ch. Galas, T. Veres: Prototyping of microfluidic systems using a commercial thermoplastic elastomer. Microfluidics Nanofluidics Vol. 11, pp. 235-244, 2011

    Google Scholar 

  56. C. Ruffert, H.-H. Gatzen: Fabrication and Test of Multi Layer Micro Coils with a High Packaging Density. HARMST2007, Besançon, France, pp. 245-246, 2007; Microsystem Technologies Vol. 14, pp. 1789-1796, 2008

    Google Scholar 

  57. C. Ruffert, H.-H. Gatzen: Miniaturized Cryoprobe for the Local Deactivation of Neural Networks. Proc.EUSPEN 7th Internat. Conference 2007, Bremen, Germany, Vol. 1, S. 73-77, 2007

    Google Scholar 

  58. C. Ruffert, H.-H. Gatzen: Alternatives for Fabricating Aerostatic Micro Guides. Proc. Smart Systems Integration 2007, European Conference & Exhibition on integration issues of miniaturized systems – MEMS, MOEMS, ICs and electronic components, Paris, France, S. 604-607, 2007

    Google Scholar 

  59. C. Ruffert, J. Silomon, L. Rissing: Fabrication of Paper-based Microfluidic Devices with Stamps. Proceedings 39th International Conference on Micro& Nanoengineering (MNE 2013), London, UK, p. 275, 2013

    Google Scholar 

  60. C. Ruffert: Magnetic beads – basics and applications. 226th ECS Meeting/ 2014 ECS and SMEQ Joint International Meeting, Cancun, Mexico, 2014 (invited paper), ECS Transactions Vol. 64, Issue 31, pp. 49-65, 2015

    Google Scholar 

  61. C. Ruffert: Aus der (Hoch)schule. Papierbasierte mikrofluidische Systeme. CHEMKON, Vol. 23, pp. 181-187, Wiley, https://doi.org/10.1002/ckon.201610286, 2016

  62. F. Saharil, L. El Fissi, Y. Liu, F. Calborg, D. Vandormael, L. A. Francis, W. van der Wijngaart, T. Haraldsson: Superior dry bonding of off-stoichiometry thiol-ene epoxy (OSTE(+)) polymers for heterogeneous material. Proceedings of the 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences μTAS 2012, pp. 1831-1833, 2012

    Google Scholar 

  63. S. Büttgenbach, A. Burisch, J. Hesselbach (Hrsg.): Design and Manufacturing of Active Microsystems. Springer 2011, ISBN-10: 3642129021, TP B1: pp. 167-188, TP B7: pp. 189-206

    Google Scholar 

  64. J. M. Shaw, J. D. Gelorme, N. C. LaBianca, W. E. Conley, S. J. Holmes: Negative photoresists for optical lithography. IBM Journal of Research and Development Vol. 41, S. 81-94, 1997

    Google Scholar 

  65. J. Sibarani, M. Takai, K. Ishihara: Surface modification on microfluidic devices with 2-methacryloyloxyethyl phosphorylcholine polymers for reducing unfavorable protein adsorption. Colloids and Surfaces B: Biointerfaces Vol. 54, Issue 1, pp. 88-93, 2007

    Google Scholar 

  66. D. Siepe: Mikrofluidisches Analysesystem zur Untersuchung von wässrigen Lösungen. Dissertation, Universität Dortmund, Fakultät für Elektrotechnik und Informatik, 2003

    Google Scholar 

  67. M. Stjernström, J. Roeraade: Method for fabrication of microfluidic systems in glass. J. of Micromechanics and Microengineering Vol. 8, pp. 33-38, 1998

    Google Scholar 

  68. S. Sugiura, J. Edahiro, K. Sumaru, T. Kanamori: Surface modification of polydimethylsiloxane with photo-grafted poly(ethylene glycol) for micropatterned protein adsorption and cell adhesion. Colloids and Surfaces B: Biointerfaces Vol. 63, Issue 2, pp. 301-305, 2008

    Google Scholar 

  69. N. Takano, L. M. Doeswijk, M. A. F. van den Boogaart, J. Auerswald, H. F. Knapp, O. Dubochet, Th. Hessler, J. Brugger: Fabrication of metallic patterns by microstencil lithography on polymer surfaces suitable as microelectrodes in integrated microfluidic systems. J. of Micromechanics and Microengineering Vol. 16, pp. 1606-1613, 2006

    Google Scholar 

  70. M. W. Toepke, D. J. Beebe: PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip Vol. 6, pp. 1484-1486, 2006

    Google Scholar 

  71. P. Tseng, C. Murray, D. Kim, D. Di Carlo: Research highlights: printing the future of microfabrication. Lab Chip Vol. 14, pp. 1491-1495, 2014

    Google Scholar 

  72. J. L. Vossen, W. Kern (Eds.): Thin Film Processes. San Diego: Academ. Press, 1978

    Google Scholar 

  73. J. L. Vossen, W. Kern (Eds.): Thin Film Processes II. Boston: Academic Press, 1991

    Google Scholar 

  74. P. Vulto, N. Glade, L. Altomare, J. Bablet, G. Medoro, A. Leonardi, A. Romani, I. Chartier, N. Manaresi, M. Tartagni, R. Guerrieri: Dry film resist for fast fluidic prototyping. Proc. μTAS 2004 8th Internat. Conference on Miniaturized Systems in Chemistry and Life Sciences, Band 2, pp. 43-45, 2004

    Google Scholar 

  75. T. Wagenknecht, K. Rattba, S. Wagner: Heißprägen von Mikrostrukturen – Fertigung mikrostrukturierter Kunststoffformteile für fluidische Anwendungen. Werkstattstechnik online , Jahrgang 96, Heft 11/12, 2006

    Google Scholar 

  76. S. T. Walsh: Roadmapping a disruptive technology: A case study. The emerging microsystems and top-down nanosystems industry. Technological Forecasting & Social Change Vol. 71, pp. 161-185, 2004

    Google Scholar 

  77. A. Waldbaur, H. Rapp, K. Länge, B. E. Rapp: Let there be chip – towards rapid prototyping of microfluidic devices: one-step manufacturing processes. Analytical Methods Vol. 3, pp. 2681-2716, 2011

    Google Scholar 

  78. z-werkzeugbau-gmbh 2009 http://www.z-microsystems.com

  79. A. K. Yetisen, M. S. Akram, Ch. R. Lowe: Paper-based microfluidic point-of-care diagnostic devices. Lab Chip Vol. 13, pp. 2210-2251, 2013

    Google Scholar 

  80. H. Yu, O. Balogun, B. Li, T. W. Murray, X. Zhang: Building embedded microchannels using a single layered SU-8, and determining Young’s modulus using a laser acoustic technique. J. of Micromechanics and Microengineering Vol. 14, pp. 1576-1584, 2004

    Google Scholar 

  81. H. Yu, O. Balogun, B. Li, T. Murray, X. Zhang: Fabrication of three-dimensional microstructures based on single-layered SU-8™ for lab-on-chip applications. Sensors and Actuators A Vol. 127, pp. 228-234, 2006

    Google Scholar 

  82. J. Zhang, K.L. Tan, G.D. Hong, L.J. Yang, H.Q. Gong: Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS. J. of Micromechanics and Microengineering Vol. 11, pp. 20-26, 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Ruffert .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ruffert, C. (2018). Technologien und Materialien für mikrofluidische Systeme. In: Mikrofluidische Separationsverfahren und -systeme. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56449-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56449-3_5

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56448-6

  • Online ISBN: 978-3-662-56449-3

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics