Skip to main content

Verständnis der biologischen Wirkung von ablativen und nicht-ablativen Lasersystemen in der Haut als Schlüssel für die Vermeidung von Komplikationen

  • Chapter
  • 1340 Accesses

Zusammenfassung

Das Verständnis der biologischen Effekte der Laserbestrahlung auf die menschliche Haut ist ein Schlüssel zur Vermeidung von Komplikationen bei der Laserbehandlung. Molekulare Effekte verschiedener ablativer und nicht-ablativer Laserbehandlungen auf menschliche Hautzellen - insbesondere die direkten Effekte auf epidermale Keratinozyten und dermale Fibroblasten - sind bisher nicht vollständig verstanden. Daher wurde zur Ergänzung der bisherigen Erkenntnisse, die meist aus klinischen Beobachtungen und histologischen Untersuchung von Patientenhautbiopsien stammten, ein neuartiges in vitro 3D-Hautmodell für die Untersuchung von Effekten der Laserbestrahlung auf die menschliche Haut entwickelt, das erstmals eine standardisierte Untersuchung zeitabhängiger molekularer Veränderungen nach Laserbehandlung ermöglicht. Diese Themen sind Gegenstand des vorliegenden Kapitels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   149.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  • Amann PM, Marquardt Y, Steiner T et al. (2016) Effects of non-ablative fractional erbium glass laser treatment on gene regulation in human three-dimensional skin models. Lasers Med Sci 31: 397–404

    Article  Google Scholar 

  • Bullard KM, Mudgett J, Scheuenstuhl H et al. (1999) Stromelysin-1-deficient fibroblasts display impaired contraction in vitro. J Surg Res 84:31–34

    Article  CAS  Google Scholar 

  • Cho SB, Lee SJ, Cho S et al. (2010) Non-ablative 1550-nm erbium-glass and ablative 10 600-nm carbon dioxide fractional lasers for acne scars: a randomized split-face study with blinded response evaluation. J Eur Acad Dermatol Venereol 24: 921–925

    Article  Google Scholar 

  • Choi SH, Kim KH, Song KH (2015) Efficacy of ablative fractional laser-assisted photodynamic therapy with short-incubation time for the treatment of facial and scalp actinic keratosis: 12-month follow-up results of a randomized, prospective, comparative trial. J Eur Acad Dermatol Venereol 29:1598–1605

    Article  CAS  Google Scholar 

  • Eckhart L, Declercq W, Ban J et al. (2000) Terminal differentiation of human keratinocytes and stratum corneum formation is associated with caspase-14 activation. J Invest Dermatol 115:1148–1151

    Article  CAS  Google Scholar 

  • Filippini M, Del Duca E, Negosanti F et al. (2016) Fractional CO2 Laser: From Skin Rejuvenation to Vulvo-Vaginal Reshaping. Photomed Laser Surg

    Google Scholar 

  • Gauglitz GG, Bureik D, Zwicker S et al. (2015) The antimicrobial peptides psoriasin (S100A7) and koebnerisin (S100A15) suppress extracellular matrix production and proliferation of human fibroblasts. Skin Pharmacol Physiol 28:115–123

    Article  Google Scholar 

  • Guimaraes PA, Haddad A, Sabino Neto M et al. (2013) Striae distensae after breast augmentation: treatment using the nonablative fractionated 1550-nm erbium glass laser. Plastic and reconstructive surgery 131:636–642

    Article  Google Scholar 

  • Gye J, Ahn SK, Kwon JE et al. (2015) Use of fractional CO2 laser decreases the risk of skin cancer development during ultraviolet exposure in hairless mice. Dermatol Surg 41:378–386

    Article  CAS  Google Scholar 

  • Hantash BM, Bedi VP, Kapadia B et al. (2007) In vivo histological evaluation of a novel ablative fractional resurfacing device. Lasers Surg Med 39:96–107

    Article  Google Scholar 

  • Helbig D, Mobius A, Simon JC et al. (2011) Heat shock protein 70 expression patterns in dermal explants in response to ablative fractional phothothermolysis, microneedle, or scalpel wounding. Wounds 23:59–67

    Google Scholar 

  • Helbig D, Paasch U (2011) Molecular changes during skin aging and wound healing after fractional ablative photothermolysis. Skin Res Technol 17:119–128

    Article  Google Scholar 

  • Hultman CS, Friedstat JS, Edkins RE et al. (2014) Laser resurfacing and remodeling of hypertrophic burn scars: the results of a large, prospective, before-after cohort study, with long-term follow-up. Ann Surg 260:519-529; discussion 529–532

    Google Scholar 

  • Ko DY, Jeon SY, Kim KH et al. (2014) Fractional erbium: YAG laser-assisted photodynamic therapy for facial actinic keratoses: a randomized, comparative, prospective study. J Eur Acad Dermatol Venereol 28:1529–1539

    Article  Google Scholar 

  • Lee GY, Lee SJ, Kim WS (2011) The effect of a 1550 nm fractional erbium-glass laser in female pattern hair loss. J Eur Acad Dermatol Venereol 25:1450–1454

    Article  Google Scholar 

  • Majid I, Imran S (2014) Fractional CO2 Laser Resurfacing as Monotherapy in the Treatment of Atrophic Facial Acne Scars. J Cutan Aesthet Surg 7:87–92

    Article  Google Scholar 

  • Moneib H, Tawfik AA, Youssef SS et al. (2014) Randomized split-face controlled study to evaluate 1550-nm fractionated erbium glass laser for treatment of acne vulgaris – an image analysis evaluation. Dermatol Surg 40:1191–1200

    Article  CAS  Google Scholar 

  • Omi T, Numano K (2014) The Role of the CO2 Laser and Fractional CO2 Laser in Dermatology. Laser Ther 23:49–60

    Google Scholar 

  • Orringer JS, Rittié L, Baker D et al. (2010) Molecular mechanisms of nonablative fractionated laser resurfacing. Br J Dermatol 163:757–768

    Article  CAS  Google Scholar 

  • Orringer JS, Rittie L, Hamilton T et al. (2011) Intraepidermal erbium:YAG laser resurfacing: impact on the dermal matrix. J Am Acad Dermatol 64:119–128

    Article  Google Scholar 

  • Orringer JS, Sachs DL, Shao Y et al. (2012) Direct quantitative comparison of molecular responses in photodamaged human skin to fractionated and fully ablative carbon dioxide laser resurfacing. Dermatol Surg 38:1668–1677

    Article  CAS  Google Scholar 

  • Puri N (2013) A study on fractional erbium glass laser therapy versus chemical peeling for the treatment of melasma in female patients. J Cutan Aesthet Surg 6:148–151

    Article  Google Scholar 

  • Reno F, Grazianetti P, Stella M et al. (2002) Release and activation of matrix metalloproteinase-9 during in vitro mechanical compression in hypertrophic scars. Arch Dermatol 138:475–478

    Article  Google Scholar 

  • Sardana K, Manjhi M, Garg VK et al. (2014) Which type of atrophic acne scar (ice-pick, boxcar, or rolling) responds to nonablative fractional laser therapy? Dermatol Surg 40:288–300

    Article  CAS  Google Scholar 

  • Schmitt L, Amann PM, Marquardt Y et al. (2017) Molecular effects of fractional ablative erbium:YAG laser treatment with multiple stacked pulses on standardized human three-dimensional organotypic skin models. Lasers Med Sci 32:805–814

    Article  Google Scholar 

  • Sklar LR, Burnett CT, Waibel JS et al. (2014) Laser assisted drug delivery: a review of an evolving technology. Lasers Surg Med 46:249–262

    Article  Google Scholar 

  • Taudorf EH, Danielsen PL, Paulsen IF et al. (2015) Non-ablative fractional laser provides long-term improvement of mature burn scars – a randomized controlled trial with histological assessment. Lasers Surg Med 47:141–147

    Article  Google Scholar 

  • Togsverd-Bo K, Haak CS, Thaysen-Petersen D et al. (2012) Intensified photodynamic therapy of actinic keratoses with fractional CO2 laser: a randomized clinical trial. Br J Dermatol 166:1262–1269

    Article  CAS  Google Scholar 

  • Tretti Clementoni M, Galimberti M, Tourlaki A et al. (2013) Random fractional ultrapulsed CO2 resurfacing of photodamaged facial skin: long-term evaluation. Lasers Med Sci 28:643-650

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Cite this chapter

Schmitt, L., Huth, S., Baron, J.M. (2018). Verständnis der biologischen Wirkung von ablativen und nicht-ablativen Lasersystemen in der Haut als Schlüssel für die Vermeidung von Komplikationen. In: Kautz, G. (eds) Energie für die Haut. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56436-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56436-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56435-6

  • Online ISBN: 978-3-662-56436-3

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics