Skip to main content

Respiratorische Farbstoffe unter Hypoxiebedingungen

  • Chapter
Alpin- und Höhenmedizin
  • 4794 Accesses

Zusammenfassung

Für die Sauerstoffversorgung des Organismus spielen auch die Quantität und Qualität des Hämoglobins eine nicht unwesentliche Rolle. Mildere Anämieformen sind mit einer Höhenexposition bis in mittlere Höhen meistens gut vereinbar. Ein Hämoglobingehalt unter 8 g/dl ist jedoch mit einem Höhenaufenthalt nicht mehr kompatibel. In seltenen Fällen kann auch die Qualität des Hämoglobins einen Vorteil oder Nachteil für die Oxygenierung des Gewebes bedeuten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Adams WH, Strang LJ (1975) Hemoglobin levels in persons of Tibetan ancestry living at high altitude. Proc Soc Exp Viol Med 149(4):1036–1039

    Article  CAS  Google Scholar 

  • Addae S, Adzaku F, Mohammed S, Annobil S (1990) Survival of patients with sickle cell anemia living at high altitude. South Med J 83(4):487

    Article  CAS  Google Scholar 

  • Audran M, Connes P, Varlet-Marie E (2003) Oxygen blood transport and doping. Bull Acad Natl Med 187(9):1669–1679

    Google Scholar 

  • Babbar R, Agarwal S (2005) Nitric oxide-hemoglobin interactions: role in oxygen uptake and delivery. Indian J Physiol Pharmacol 49(4):378–382

    Google Scholar 

  • Belcher JD, Beckman JD, Balla G, Balla J, Verceletti G (2010) Heme degradation and vascular injury. Antioxid Redox Signal 12(2):233–248

    Article  CAS  Google Scholar 

  • Berkov L (2013) Factors affecting hemoglobin measurement. J Clin Monit Comput 27(5):499–508

    Article  Google Scholar 

  • Bertrand E (2005) Is sickle cell trait a risk factor? Med Trop (Mars) 65(4):378–381

    Google Scholar 

  • Bigham AW, Wilson MJ, Julian CG, Kiyamu M, Vargas E, Leon-Velarde F, Rivera-Chira M, Rodriguez C, Browne VA, Parra E, Brutsaert TD, Moore LG, Shriver MD (2013) Andean and Tibetan patterns of adaptation to high altitude. Am J Hum Biol 25(2):190–197

    Article  Google Scholar 

  • Borrione P, Mastrone A, Salvo RA, Spaccaniglio A, Grasso L, Angeli A (2008) Oxygen delivery enhancers: past, present, and future. J Endocrinol Invest 3(2):185–192

    Article  CAS  Google Scholar 

  • Brewer GJ, Sing CF, Eaton JW, Weil JV, Brewer LF, Grover RF (1974) Effects on hemoglobin oxygen affinity of smoking in residents of intermediate altitude. J Lab Clin Med 84(2):191–205

    Google Scholar 

  • Brewer GJ (1993) Risks in sickle cell trait. J Lab Clin Med 122(4):354–355

    Google Scholar 

  • Claster S, Goswin MJ, Embury SH (1981) Risk of altitude exposure in sickle cell disease. West J Med 135(5):364–367

    Google Scholar 

  • Davies JM, Latto IP, Jones JG, Veale A, Wardrop CAJ (1979) Effects of stopping smoking for 48 hours on oxygen availability from the blood: a study of pregnant women. Br Med J 2(6186):355–365

    Article  CAS  Google Scholar 

  • Dillard TA, Kark JA, Rajagopal KR, Key JA, Canik JJ, Ruehle CJ (1987) Pulmonary function in sickle cell trait. Ann Intern Med 106(2):191–196

    Article  CAS  Google Scholar 

  • Dirren H, Logman MH, Barclay DV, Freire WB (1994) Altitude correction for hemoglobin. Eur J Clin Nutr 48(9):625–632

    Google Scholar 

  • Franklin QJ, Compeggie M (1999) Splenic syndrome in sickle cell trait: four case presentation and a review of the literature. Mil Med 164(3):230–233

    Article  CAS  Google Scholar 

  • Frisancho OE, Ichiyanagui Roddriguez C (2012) Spleen infarction and S-hemoglobinopathies in the high altitude lands. Rev Gastroenterol 31(1):66–78

    Google Scholar 

  • Giardina B, Mosca D, De Rosa MC (2004) The Bohr effet of haemoglobin in vertebrates: an example of molecular adaptation to different physiological requirements. Acta Physiol Scand 182(3): 229–244

    Article  CAS  Google Scholar 

  • Githens JH, Phillips CR, Humbert JR, Bonner SE, Ewing PC (1975) Effects of altitude in persons with sickle hemoglobinopathies. Rocky Mt Med J 72(12): 515–519

    Google Scholar 

  • Gladwin MT (2006) Role of the red blood cell in nitric oxide homeostasis and hypoxic vasodilation. Adv Exp Med Biol 588:189–205

    Google Scholar 

  • Gourdin D, Vergnes H, Gutierez N (1975) Methaemoglobin in man living at high altitude. Br J Haematol 29(2):243–246

    Article  CAS  Google Scholar 

  • Haymond S, Cariappa R, Eby CS, Scott MG (2005) Laboratory assessment of oxygenation in methemoglobinemia. Clin Chem 51(2):434–444

    Article  CAS  Google Scholar 

  • Hebbel RPJ, Eaton W, Kronenberg RS, Zanjani ED, Moore LG, Berger EM (1978) Human Lamas: adaptation to altitude in subjects with high hemoglobin oxygen affinity. J Clin Invest 62(3):593–600

    Article  CAS  Google Scholar 

  • Heffner JE, Sahn SA (1981) High-altitude pulmonary infarction. Arch Intern Med 141(12):1721

    Article  CAS  Google Scholar 

  • Isbell TS, Gladwin MT, Patel RP (2007) Hemoglobin oxygen fractional saturation regulates nitrite-dependent vasodilation of aortic ring bioassays. Am J Physiol Heart Circ Physiol 293(4): H2565–2572

    Article  CAS  Google Scholar 

  • Jensen FB (2004) Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport. Acta Physiol Scand 182(3): 215–227

    Google Scholar 

  • Kosaka H, Seiyama A (1997) Increased oxygen dissociation by nitric oxide from RBC. Adv Exp Med Biol 428:349–354

    Google Scholar 

  • Kwasiborski PJ, Kowalczyk P, Zielinski J, Przybylski J, Cwetsch A (2010) Role of hemoglobin affinity to oxygen in adaptation to hypoxemia. Pol Merkur Lekarski 28(166):260–264

    Google Scholar 

  • Küpper T, Ebel K, Gieseler U (2009) Moderne Berg- und Höhenmedizin. Handbuch für Ausbilder, Bergsteiger, Ärzte. Gentner, Stuttgart

    Google Scholar 

  • Marengo-Rowe AJ (2006) Structure-function relations of human hemoglobins. Proc (Bayl Univ Med Cent) 19(3):239–245

    Article  Google Scholar 

  • Monod J, Wyman J, Changeux J (1965) On the nature of allosteric transitions: A plausible model. J Mol Biol 12:88–118

    Article  CAS  Google Scholar 

  • Nuss R, Loehr JP, Daberkow E, Graham L, Lane PA (1993) Cardiopulmonary function with sickle cell trait who reside at moderately high altitude. J Lab Clin Med 122(4):382–387

    Google Scholar 

  • Patel RP (2000) Biochemical aspects of the reaction of hemoglobin and NO: implication for Hb-based blood substitutes. Free Radic Biol Med 28(10): 1518–1525

    Article  CAS  Google Scholar 

  • Pocidalo JJ, Sinet M (1979) Sickle cell anemia and the affinity of the blood for oxygen. C R Seances Soc Biol Fil 173(2):303–313

    Google Scholar 

  • Prakash UB (2005) Lungs in hemoglobinopathies, erythrocyte disorders, and hemorrhagic diatheses. Semin Respir Crit Care Med 26(5):527–540

    Article  Google Scholar 

  • Resta TC, Walker BR, Eichinger MR, Doyle MP (2002) Rate of NO scavenging alters effects of recombinant hemoglobin solutions on pulmonary vasoreactivity. J Appl Physiol 93(4):1327–1336

    Article  CAS  Google Scholar 

  • Reynafarje C, Faura J, Villavicencio D, Curaca A, Reynafarje B, Oyola L, Contreras L, Vallenas E, Faura A (1975) Oxygen transport of hemoglobin in high-altitude animals (Camelidae). J Appl Physiol 38(5): 806–810

    Article  CAS  Google Scholar 

  • Rimawi A, Jallad S (2008) Sport participation in adolescents with sickle cell disease. Pediatr Endocrinol Rev 6 (Suppl1):214–216

    Google Scholar 

  • Saltin B, Gagge A, Stolwigk J (1968) Muscle temperature during submaximal exercise in man. J Appl Physiol 25(6):679

    Article  CAS  Google Scholar 

  • Schumacher YO, Ashenden M (2004) Doping with artificial oxygen carriers: an update. Sports Med 34(3):141–150

    Article  Google Scholar 

  • Shaskey DJ, Green GA. Sports haematology. Sports Med 29(1):27–38

    Article  CAS  Google Scholar 

  • Sheikha A (2005) Splenic syndrome in patients at high altitude with unrecognized sickle cell trait: splenectomy is often unnecessary. Can J Surg 48(5):S377–388

    Google Scholar 

  • Silverman TA, Weiskopf RB (2009) Planning Committee. Hemoglobin-based oxygen carriers: current status and future directions. Anesthesiology 111(5): 946–963

    Article  Google Scholar 

  • Simonson TS, McClain DA, Jorde LB, Prchal JT (2012) Genetic determinants of Tibetian high-altitude adapation. Hum Genet 131(4):527–533

    Article  Google Scholar 

  • Simonson TS, Yang Y, Huft CD (2010) Genetic evidence for high-altitude adaptation in Tibet. Science 329 (5987):72–75

    Article  CAS  Google Scholar 

  • Storz JF, Moriyama H (2008) Mechanisms of hemoglobin adaptation to high altitude hypoxia. High Alt Med Biol 9(2):146–157

    Article  CAS  Google Scholar 

  • Storz JF (2010) Evolution. Genes for high altitudes. Science 329(5987):40–41

    Article  CAS  Google Scholar 

  • Thiriet P, Le Hesran JY, Wouassi D, Bitanga E, Gozal D, Louis FJ (1994) Sickle cell performance in a prolonged race at high altitude. Med Sci Sports Exerc 26(7):914–918

    Google Scholar 

  • Tufts DM, Revsbech IG, Cheviron ZA, Weber RE, Fago A, Storz JF (2013) Phenotypic plasticity in blood-oxygen transport in highland and lowland deer mice. J Exp Biol 216(Pt 7):1167–1173

    Article  Google Scholar 

  • Vargas E, Spielvogel H (2006) Chronic mountain sickness, optimal hemoglobin, and heart disease. High Alt Med Biol 7(2):136–149

    Google Scholar 

  • Watson-Williams EJ (1982) Altitude exposure in sickle cell disease. West J Med 136(2):168–169

    Google Scholar 

  • Weber RE (2007) High-altitude adaptations on vertebrate hemoglobine. Respir Physiol Neurobiol 158 (2–3):132–142

    Article  CAS  Google Scholar 

  • Weber RF, Campell KL (2011) Temperature dependence of haemoglobin-oxygen affinity in heterothermic vertebrates: mechanisms and biological significance. Acta Physiol (Oxf) 202(3):549–562

    Article  Google Scholar 

  • Wells RM, Brennan SO (1992) The detection and importance of functionally abnormal haemoglobins. N Z Med J 105(940):329–330

    Google Scholar 

  • Wilson MJ, Julian CG, Roach RC (2011) Genomic analysis of high altitude adaptation: innovations and implications. Curr Sports Med Rep 10(2):59–61

    Google Scholar 

  • Yi X, Liang Y, Huerta-Sanchez E (2010) Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329(5987):75–78

    Google Scholar 

  • Zinchuk VV (2003) The involvment of nitric oxide in formation of hemoglobin oxygen-binding properties. Usp Fisiol Nauk 34(2):33–45

    Google Scholar 

  • Zinkham WH, Winslow RM (1989) Unstable hemoglobins: influence of environment on phenotypic expression of a genetic disorder. Medicine (Baltimore) 68(5):309–320

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Domej .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Cite this chapter

Domej, W. (2019). Respiratorische Farbstoffe unter Hypoxiebedingungen. In: Berghold, F., et al. Alpin- und Höhenmedizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56396-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56396-0_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56395-3

  • Online ISBN: 978-3-662-56396-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics