Skip to main content

Nanostructured Electrodes for High-Performing Solid Oxide Fuel Cells

  • Chapter
  • First Online:
Nanostructured Materials for Next-Generation Energy Storage and Conversion

Abstract

Solid oxide fuel cell (SOFC) is an all-solid-state ceramic electrochemical device for converting chemical energy (fuels) to electricity with high energy efficiency and ultralow harmful emissions. These classes of FCs have received significant attention by researchers as a potential replacement for petroleum-based energy devices. In order to broaden the material selection and increase material system durability, the development of intermediate- or low-temperature SOFC is critical to making their commercialization viable. Therefore, the SOFC performance at lowered operating temperatures must be improved by the innovation of materials and microstructures. The nanostructure engineering of electrodes has demonstrated their improved catalytic performance due to minimization of the electrode polarization resistances for oxygen reduction reaction and fuel oxidation reaction at the nanoscale compared to the traditional electrode design. The synthesis technique strategy was based on wet chemistry catalyst infiltration into electrode structure and has been demonstrated improvements in power density and electrode stability. In this chapter, the technical process of ion infiltration method is discussed; and the different routes in fabricating nanostructured electrodes to achieve high-performing SOFC in hydrogen and hydrocarbon fuels are reviewed. The electrode parameters that lead to improvement of SOFC performance are also summarized. By fabricating electrodes at the nanoscale, a significant increase in specific area was obtained that can provide greater active catalysis sites for electrode reactions, as well as a decrease in the activation polarization resistance which collectively led to improved SOFC performance.

Author Contributions

Dr. Ding would like to thank Prof. Neal P. Sullivan, the Director Colorado Fuel Cell Center, for providing numerous supports during author's academic stay in Colorado School of Mines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.Q. Minh, Ceramic fuel cells. J. Am. Ceram. Soc. 76, 563–588 (1993)

    Article  CAS  Google Scholar 

  2. A.J. Jacobson, Materials for solid oxide fuel cells. Chem. Mater. 22, 660–674 (2010)

    Article  CAS  Google Scholar 

  3. D.J.L. Brett, A. Atkinson, N.P. Brandon, S.J. Skinner, Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev. 37, 1568–1578 (2008)

    Article  CAS  Google Scholar 

  4. R.M. Ormerod, Solid oxide fuel cells. Chem. Soc. Rev. 32, 17–28 (2003)

    Article  CAS  Google Scholar 

  5. Y. Yi, A.D. Rao, J. Brouwer, G.S. Samuelsen, J. Power Sources 144, 67–76 (2005)

    Article  CAS  Google Scholar 

  6. S.C. Singhal, Solid oxide fuel cells for stationary, mobile, and military applications. Solid State Ionics 152-153, 405–410 (2002)

    Article  CAS  Google Scholar 

  7. W.G. Coors, Protonic ceramic fuel cells for high-efficiency operation with methane. J. Power Sources 118, 150–156 (2003)

    Article  CAS  Google Scholar 

  8. L. Yang, C.D. Zuo, S.Z. Wang, Z. Cheng, M. Liu, A novel composite cathode for low-temperature SOFCs based on oxide proton conductors. Adv. Mater. 20, 3280–3283 (2008)

    Article  CAS  Google Scholar 

  9. N.M. Sammes, Y. Du, R. Bove, Design and fabrication of a 100 W anode-supported tubular SOFC stack. J. Power Sources 145, 428–434 (2005)

    Article  CAS  Google Scholar 

  10. T. Fukui, S. Ohara, K. Mukai, Long-term stability of Ni-YSZ anode with a new microstructure prepared from composite powder. Electrochem. Solid-State Lett. 29(1), 120–122 (1998)

    Google Scholar 

  11. A. Atkinson, S. Barnett, R.J. Gorte, J.T.S. Irvine, A.J. McEvoy, M. Mogensen, S.C. Singhal, J. Vohs, Advanced anodes for high-temperature fuel cells. Nat. Mater. 3, 17–27 (2004)

    Article  CAS  Google Scholar 

  12. T. Zhang, W.G. Fahrenholtz, S.T. Reis, R.K. Brow, Borate volatility from SOFC sealing glasses. J. Am. Ceram. Soc. 91, 2564–2569 (2008)

    Article  CAS  Google Scholar 

  13. E.P. Murray, T. Tsai, S.A. Barnett, A direct-methane fuel cell with a ceria-based anode. Nature 400, 649–651 (1999)

    Article  CAS  Google Scholar 

  14. S. McIntosh, R.J. Gorte, Direct hydrocarbon solid oxide fuel cells. Chem. Rev. 104, 4845–4865 (2004)

    Article  CAS  Google Scholar 

  15. Y.H. Huang, R.I. Dass, Z.L. Xing, J.B. Goodenough, Double perovskites as anode materials for solid oxide fuel cells. Science 312, 254–257 (2006)

    Article  CAS  Google Scholar 

  16. R. Steinberger-Wilckens, F. Tietz, M.J. Smith, J. Mougin, B. Rietveld, O. Bucheli, J.V. Herle, R. Rosenberg, M. Zahid, P. Holtappels, Real-SOFC–a joint European effort in understanding SOFC degradation. ECS Trans. 7, 67–76 (2007)

    Article  Google Scholar 

  17. A. Hagen, R. Barfod, P.V. Hendriksen, Y.-L. Liu, S. Ramousse, Degradation of anode-supported SOFCs as a function of temperature and current load. J. Electrochem. Soc. 153, A1165–A1171 (2006)

    Article  CAS  Google Scholar 

  18. M.L. Liu, M.E. Lynch, K. Blinn, F.M. Alamgir, Y.M. Choi, Rational SOFC material design: new advances and tools. Mater. Today 14, 534–546 (2011)

    Article  CAS  Google Scholar 

  19. J.-H. Lee, J.-W. Heo, D.-S. Lee, J. Kim, G.-H. Kim, H.-W. Lee, H.S. Song, J.-H. Moon, The impact of anode microstructure on the power generating characteristics of SOFC. Solid State Ionics 158, 225–232 (2003)

    Article  CAS  Google Scholar 

  20. K.J. Yoon, P. Zink, S. Gopalan, U.B. Pal, Polarization measurements on single-step co-fired solid oxide fuel cells (SOFCs). J. Power Sources 172, 39–49 (2007)

    Article  CAS  Google Scholar 

  21. A.V. Virkar, J. Chen, C.W. Tanner, J.-W. Kim, The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells. Solid State Ionics 131, 189–198 (2000)

    Article  CAS  Google Scholar 

  22. S.H. Chan, K.A. Khor, Z.T. Xia, A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness. J. Power Sources 93, 130–140 (2001)

    Article  CAS  Google Scholar 

  23. D.A. Noren, M.A. Hoffman, Clarifying the Butler-Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models. J. Power Sources 152, 175–181 (2005)

    Article  CAS  Google Scholar 

  24. Z.P. Shao, S.M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170–173 (2004)

    Article  CAS  Google Scholar 

  25. S.B. Adler, Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 4791–4843 (2004)

    Article  CAS  Google Scholar 

  26. C.W. Sun, R. Hui, J. Roller, Cathode materials for solid oxide fuel cells: a review. J. Solid State Electrochem. 14, 1125–1144 (2010)

    Article  CAS  Google Scholar 

  27. S.J. Skinner, Recent advances in perovskite-type materials for solid oxide fuel cell cathodes. Int. J. Inorg. Mater. 3, 113–121 (2001)

    Article  CAS  Google Scholar 

  28. A. Tarancόn, S.J. Skinner, R.J. Chater, F. Hernández-Ramírez, J.A. Kilner, Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells. J. Mater. Chem. 17, 3175–3181 (2007)

    Article  Google Scholar 

  29. L. Shao, Q. Wang, L. Fan, P. Wang, N. Zhang, K. Sun, Copper-cobalt spinel as a high-performance cathode for intermediate temperature solid oxide fuel cells. Chem. Commun. 52, 8615–8618 (2016)

    Article  CAS  Google Scholar 

  30. Q. Fu, F. Tietz, D. Sebold, S. Tao, J.T.S. Irvine, An efficient ceramic-based anode for solid oxide fuel cells. J. Power Sources 171, 663–669 (2007)

    Article  CAS  Google Scholar 

  31. G. Xiao, F. Chen, Redox stable anodes for solid oxide fuel cells. Front. Energy Res. 2, 1–13 (2014)

    Google Scholar 

  32. K. Huang, J. Wan, J.B. Goodenough, Oxide-ion conducting ceramics for solid oxide fuel. Cell 36, 1093–1098 (2001)

    CAS  Google Scholar 

  33. J.B. Goodenough, Y.-H. Huang, Alternative anode materials for solid oxide fuel cells. J. Power Sources 173, 1–10 (2007)

    Article  CAS  Google Scholar 

  34. P.G. Bruce, B. Scrosati, J.-M. Tarascon, Nanomaterials for rechargeable lithium batteries. Angew. Chem. 47, 2930–2946 (2008)

    Article  CAS  Google Scholar 

  35. L. Zhang, T.J. Webster, Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4, 66–80 (2009)

    Article  CAS  Google Scholar 

  36. Q. Peng, Y.-C. Tseng, S.B. Darling, J.W. Elam, A route to nanoscopic materials via sequential infiltration synthesis on block copolymer templates. ACS Nano 5, 4600–4606 (2011)

    Article  CAS  Google Scholar 

  37. J. Martin, C. Mijangos, Tailored polymer-based nanofibers and nanotubes by means of different infiltration methods into alumina nanopores. Langmuir 25, 1181–1187 (2009)

    Article  CAS  Google Scholar 

  38. T.Z. Sholklapper, H. Kurokawa, C.P. Jacobson, S.J. Visco, L.C. De Jonghe, Nanostructured solid oxide fuel cell electrodes. Nano Lett. 7, 2136–2141 (2007)

    Article  CAS  Google Scholar 

  39. C.C. Chao, C.M. Hsu, Y. Cui, F.B. Prinz, Improved solid oxide fuel cell performance with nanostructured electrolytes. ACS Nano 5, 5692–5696 (2011)

    Article  CAS  Google Scholar 

  40. L. Baque, A. Caneiro, M.S. Moreno, A. Serquis, High-performance nanostructured IT-SOFC cathodes prepared by the novel chemical method. Electrochem. Commun. 10, 1905–1908 (2008)

    Article  CAS  Google Scholar 

  41. D. Ding, X. Li, S.Y. Lai, K. Gerdes, M. Liu, Enhancing SOFC cathode performance by surface modification through infiltration. Energy Environ. Sci. 7, 552–575 (2014)

    Article  CAS  Google Scholar 

  42. J.M. Vohs, R.J. Gorte, High-performance SOFC cathodes prepared by infiltration. Adv. Mater. 21, 943–956 (2009)

    Article  CAS  Google Scholar 

  43. S.P. Jiang, A review of wet impregnation – an alternative method for the fabrication of high performance and nanostructured electrodes of solid oxide fuel cells. Mater. Sci. Eng. 418, 199–210 (2006)

    Article  Google Scholar 

  44. S.P. Jiang, Nanoscale and nanostructured electrodes of solid oxide fuel cells by infiltration: advances and challenges. Int. J. Hydro. Energy 37, 449–470 (2012)

    Article  CAS  Google Scholar 

  45. M.J. Jorgensen, M. Mogensen, Impedance of solid oxide fuel cell LSM/YSZ composite cathodes. J. Electrochem. Soc. 148, A433–A442 (2001)

    Article  CAS  Google Scholar 

  46. M. Shiono, K. Kobayashi, T.L. Nguyen, K. Hosoda, T. Kato, K. Ota, M. Dokiya, Effect of the CeO2 interlayer on ZrO2 electrolyte/la(Sr)CoO3 cathode for low-temperature SOFCs. Solid State Ionics 170, 1–7 (2004)

    Article  CAS  Google Scholar 

  47. L. Yang, C.D. Zuo, S.Z. Wang, Z. Cheng, M.L. Liu, A novel composite cathode for low-temperature SOFCs based on oxide proton conductors. Adv. Mater. 20, 3280–3283 (2008)

    Article  CAS  Google Scholar 

  48. Z.P. Shao, S.M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170–173 (2004)

    Article  CAS  Google Scholar 

  49. H. He, Y. Huang, J. Regal, M. Boaro, J.M. Vohs, R.J. Gorte, Low-temperature fabrication of oxide composites for solid-oxides fuel cells. J. Am. Ceram. Soc. 87, 331–336 (2004)

    Article  CAS  Google Scholar 

  50. Y. Huang, J.M. Vohs, R.J. Gorte, Characterization of LSM-YSZ composites prepared by impregnation methods. J. Electrochem. Soc. 152, A1347–A1353 (2005)

    Article  CAS  Google Scholar 

  51. T.J. Armstrong, A.V. Virkar, 204th Meeting of the Electrochemical Society (Electrochemical Society, Pennington, 2003). Abstract 1113

    Google Scholar 

  52. Z. Jiang, Z. Lei, B. Ding, C. Xia, F. Zhao, F. Chen, Electrochemical characteristics of solid oxide fuel cell cathodes prepared by infiltrating (la,Sr)MnO3 nanoparticles into yttria-stabilized bismuth oxide backbones. Int. J. Hydrog. Energy 35, 8322–8330 (2010)

    Article  CAS  Google Scholar 

  53. T.Z. Sholklapper, C. Lu, C.P. Jacobson, S.J. Visco, L.C. De Jonghe, LSM-infiltrated solid oxide fuel cell cathodes. Electrochem. Solid-State Lett. 9, A376–A378 (2006)

    Article  CAS  Google Scholar 

  54. T.Z. Sholklapper, V. Radmilovic, C.P. Jacobson, S.J. Visco, L.C.D. Jonghe, Electrochem. Solid-State Lett. 10, B74–B76 (2007)

    Article  CAS  Google Scholar 

  55. M.G. Bellino, J.G. Scannell, D.G. Lamas, A.G. Leyva, N.E. Walsöe de Reca, High-performance solid-oxide fuel cell cathodes based on cobaltite nanotubes. J. Am. Chem. Soc. 129, 3066–3067 (2007)

    Article  CAS  Google Scholar 

  56. Y. Gong, D. Palacio, X. Song, R.L. Patel, X. Liang, X. Zhao, J.B. Goodenough, K. Huang, Stabilizing nanostructured solid oxide fuel cell cathode with atomic layer deposition. Nano Lett. 13, 4340–4345 (2013)

    Article  CAS  Google Scholar 

  57. Y.L. Liu, A. Hagen, R. Barfod, M. Chen, H.J. Wang, F.W. Poulsen, P.V. Hendriksen, Microstructural studies on the degradation of the interface between LM-YSZ cathode and YSZ electrolyte in SOFCs. Solid State Ionics 180, 1298–1304 (2009)

    Article  CAS  Google Scholar 

  58. T.J. Armstrong, J.G. Rich, Anode-supported solid oxide fuel cells with La0.6Sr0.4CoO3-δ-Zr0.84Y0.16O2-δ composite cathodes fabricated by an infiltration method. J. Electrochem. Soc. 153, A515–A520 (2006)

    Article  CAS  Google Scholar 

  59. B. Liu, X. Chen, Y. Dong, S.S. Mao, M. Cheng, A high-performance, a nanostructured Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathode for solid oxide fuel cells. Adv. Energy Mater. 1, 343–346 (2011)

    Article  CAS  Google Scholar 

  60. D. Han, X. Liu, F. Zeng, J. Qian, T. Wu, Z. Zhan, A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells. Sci. Rep. 2, 462 (2012)

    Article  Google Scholar 

  61. N. Ai, S.P. Jiang, Z. Lü, K. Chen, W. Su, Nanostructured (Ba,Sr)(Co,Fe) O3-δ impregnated (La,Sr) MnO3 cathode for intermediate-temperature solid oxide fuel cells. J. Electrochem. Soc. 157, B1033–B1039 (2010)

    Article  CAS  Google Scholar 

  62. R. Su, Z. Lü, S.P. Jiang, Y.B. Shen, W.H. Su, K.F. Chen, Ag decorated (Ba,Sr)(Co,Fe)O3 cathodes for solid oxide fuel cells prepared by electroless silver deposition. Int. J. Hydrog. Energy 38, 2413–2420 (2013)

    Article  CAS  Google Scholar 

  63. C. Xia, M. Liu, A simple and cost-effective approach to fabrication of dense ceramic membranes on porous substrates. J. Am. Ceram. Soc. 84, 1903–1905 (2001)

    Article  CAS  Google Scholar 

  64. C. Xia, F. Chen, M. Liu, Reduced-temperature solid oxide fuel cells fabricated by screen printing. Electrochem. Solid-State Lett. 4, A52–A54 (2001)

    Article  CAS  Google Scholar 

  65. H.Y. Tu, Y. Takeda, N. Imanishi, O. Yamamoto, Ln1-xSrxCoO3 (Ln=Sm, Dy) for the electrode of solid oxide fuel cells. Solid State Ionics 100, 283–288 (1997)

    Article  CAS  Google Scholar 

  66. Y. Liu, S. Zha, M. Liu, Novel nanostructured electrodes for solid oxide fuel cells fabricated by combustion chemical vapor deposition (CVD). Adv. Mater. 16, 256–260 (2004)

    Article  Google Scholar 

  67. F. Zhao, Z. Wang, M. Liu, L. Zhang, C. Xia, F. Chen, Novel nano-network cathodes for solid oxide fuel cells. J. Power Sources 185, 13–18 (2008)

    Article  CAS  Google Scholar 

  68. T. Suzuki, Z. Hasan, Y. Funahashi, T. Yamaguchi, Y. Fujishiro, M. Awano, Impact of anode microstructure on solid oxide fuel cells. Science 325, 852–855 (2009)

    Article  CAS  Google Scholar 

  69. Z. Zhan, S.A. Barnett, A reduced temperature solid oxide fuel cell with nanostructured anodes. Energy Environ. Sic. 4, 3951–3954 (2011)

    Article  CAS  Google Scholar 

  70. J.H. Park, S.M. Han, K.J. Yoon, H. Kim, J. Hong, B.-K. Kim, J.-H. Lee, J.-W. Son, Impact of nanostructured anode on low-temperature performance of thin-film-based anode-supported solid oxide fuel cells. J. Power Sources 315, 324–330 (2016)

    Article  CAS  Google Scholar 

  71. T. Yamaguchi, H. Sumi, K. Hamamoto, T. Suzuki, Y. Fujishiro, J.D. Carter, S.A. Barnett, Effect of nanostructured anode functional layer thickness on the solid-oxide fuel cell performance in the intermediate temperature. Int. J. Hydrog. Energy 39, 19731–19736 (2014)

    Article  CAS  Google Scholar 

  72. S. Park, J.M. Vohs, R.J. Gorte, Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404, 265–267 (2000)

    Article  CAS  Google Scholar 

  73. R.J. Gorte, S. Park, J.M. Vohs, C. Wang, Anodes for direct oxidation of dry hydrocarbons in a solid-oxide fuel cell. Adv. Mater. 12, 1465–1469 (2000)

    Article  CAS  Google Scholar 

  74. M.D. Gross, J.M. Vohs, R.J. Gorte, Recent progress in SOFC anodes for direct utilization of hydrocarbons. J. Mater. Chem. 17, 3071–3077 (2007)

    Article  CAS  Google Scholar 

  75. X.-F. Ye, B. Huang, S.R. Wang, Z.R. Wang, L. Xiong, T.L. Wen, Preparation and performance of a Cu–CeO2–ScSZ composite anode for SOFCs running on ethanol fuel. J. Power Sources 164, 203–209 (2007)

    Article  CAS  Google Scholar 

  76. R.J. Gorte, J.M. Vohs, Nanostructured anodes for solid oxide fuel cells. Curr. Opin. Colloid Interface Sci. 14, 236–244 (2009)

    Article  CAS  Google Scholar 

  77. S.W. Tao, J.T.S. Irvine, A redox-stable efficient anode for solid oxide fuel cells. Nat. Mater. 2, 320–323 (2003)

    Article  CAS  Google Scholar 

  78. X.W. Zhou, N. Yan, K.T. Chuang, J.L. Luo, Progress in La-doped SrTiO3 (LST)-based anode materials for solid oxide fuel cells. RSC Adv. 4, 118–131 (2014)

    Article  CAS  Google Scholar 

  79. Y.H. Huang, R.I. Dass, Z.L. Xing, J. Goodenough, Double perovskites as anode materials for solid oxide fuel cells. Science 312, 254–257 (2006)

    Article  CAS  Google Scholar 

  80. Q. Liu, X.H. Dong, G.L. Xiao, F. Zhao, F.L. Chen, A novel electrode material for symmetric SOFCs. Adv. Mater. 22, 5478–5482 (2010)

    Article  CAS  Google Scholar 

  81. C.H. Yang, Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells. Adv. Mater. 24, 1439–1443 (2012)

    Article  CAS  Google Scholar 

  82. J.S. Kim, V.V. Nair, J.M. Vohs, R.J. Gorte, A study of the methane tolerance of LSCM-YSZ composite anodes with Pt, Ni, Pd and ceria catalysts. Scr. Mater. 65, 90–95 (2011)

    Article  CAS  Google Scholar 

  83. K.B. Yoo, G.M. Choi, LST-GDC composite anode on LaGaO3-based solid oxide fuel cell. Solid State Ionics 192, 515–518 (2011)

    Article  CAS  Google Scholar 

  84. Y.H. Huang, Double-perovskite anode materials Sr2MMoO6 (M = Co, Ni) for solid oxide fuel cells. Chem. Mater. 21, 2319–2326 (2009)

    Article  CAS  Google Scholar 

  85. S.P. Jiang, Y. Ye, T. He, S.B. Ho, Nanostructured palladium–La0.75Sr0.25Cr0.5Mn0.5O3/Y2O3–ZrO2 composite anodes for direct methane and ethanol solid oxide fuel cells. J. Power Sources 185, 179–182 (2008)

    Article  CAS  Google Scholar 

  86. Y. Ye, T. He, Y. Li, E.H. Tang, T.L. Reitz, S.P. Jiang, Pd-promoted La0.75Sr0.25Cr0.5Mn0.5O3/YSZ composite anodes for direct utilization of methane in SOFCs. J. Electrochem. Soc. 155, B811–B818 (2008)

    Article  CAS  Google Scholar 

  87. H. Kurokawa, J. Yang, C. Jacobson, L. DE Jongle, S. Visco, Y-doped SrTiO3 based sulfur tolerant anode for solid oxide fuel cells. J. Power Sources 164, 510–518 (2007)

    Article  CAS  Google Scholar 

  88. S. Primdahl, Y.L. Liu, Ni catalyst for hydrogen conversion in Gadolinia-doped ceria anodes for solid oxide fuel cells. J. Electrochem. Soc. 149, A1466–A1472 (2002)

    Article  CAS  Google Scholar 

  89. H. Uchida, S. Suzuki, M. Watanabe, High performance electrode for medium-temperature solid oxide fuel cells. Electrochem. Solid-State Lett. 6, A174–A177 (2003)

    Article  CAS  Google Scholar 

  90. Q. Fu, F. Tietz, D. Sebold, S. Tao, J. Irvine, An efficient ceramic-based anode for solid oxide fuel cells. J. Power Sources 171, 663–669 (2007)

    Article  CAS  Google Scholar 

  91. S. Boulfrad, M. Cassidy, E. Traversa, J.T.S. Irvine, Improving the performance of SOFC anodes by decorating perovskite with Ni nanoparticles. ECS Trans. 57, 1211–1216 (2013)

    Article  Google Scholar 

  92. K.B. Yoo, B.H. Park, G.M. Choi, Stability and performance of SOFC with SrTiO3-based anode in CH4 fuel. Solid State Ionics 225, 104–107 (2012)

    Article  CAS  Google Scholar 

  93. G. Xiao, C. Jin, Q. Liu, A. Heyden, F. Chen, Ni modified ceramic anodes for solid oxide fuel cells. J. Power Sources 201, 43–48 (2012)

    Article  CAS  Google Scholar 

  94. S. Sengodan, S. Choi, A. Jun, T.H. Shin, Y.-W. Ju, H.Y. Jeong, J. Shin, J.T.S. Irvine, G. Kim, Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat. Mater. 14, 205–209 (2015)

    Article  CAS  Google Scholar 

  95. S. Lee, G. Kim, J.M. Vohs, R.J. Gorte, SOFC anodes based on infiltration of La0.3Sr0.7TiO3. J. Electrochem. Soc. 155, B1179–B1183 (2008)

    Article  CAS  Google Scholar 

  96. G. Kim, S. Lee, J.Y. Shin, G. Corre, J.T.S. Irvine, J.M. Vohs, R.J. Gorte, Investigation of the structural and catalytic requirements for high-performance SOFC anodes formed by infiltration of LSCM. Electrochem. Solid-State Lett. 12, B48–B52 (2009)

    Article  CAS  Google Scholar 

  97. G. Corre, G. Kim, M. Cassidy, J.M. Vohs, R.J. Gorte, J.T.S. Irvine, Activation and ripening of impregnated manganese containing perovskite SOFC electrodes under redox cycling. Chem. Mater. 21, 1077–1084 (2009)

    Article  CAS  Google Scholar 

  98. G. Kim, G. Corre, J.T.S. Irvine, J.M. Vohs, R.J. Gorte, Engineering composite oxide SOFC anodes for efficient oxidation of methane. Electrochem. Solid-State Lett. 11, B16–B19 (2008)

    Article  CAS  Google Scholar 

  99. J.-S. Kim, N.L. Wieder, A.J. Abraham, M. Cargnello, P. Fornasiero, R.J. Gorte, J.M. Vohs, Highly active and thermally stable core-shell catalysts for solid oxide fuel cells. J. Electrochem. Soc. 158, B596–B600 (2011)

    Article  CAS  Google Scholar 

  100. H. Ding, Z. Tao, S. Liu, J. Zhang, A high-performing sulfur-tolerant and redox-stable layered perovskite anode for direct hydrocarbon solid oxide fuel cells. Sci. Rep. 5, 18129 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanping Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ding, H. (2018). Nanostructured Electrodes for High-Performing Solid Oxide Fuel Cells. In: Li, F., Bashir, S., Liu, J. (eds) Nanostructured Materials for Next-Generation Energy Storage and Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56364-9_8

Download citation

Publish with us

Policies and ethics