Nanomaterials in Proton Exchange Membrane Fuel Cells

  • Yufeng Zhang
  • Rui Xue
  • Weijian Yuan
  • Xiaowei Liu


With the rapid development of modern science and technology in the current society, environmental conservation and taking advantage of new energy sources have become the core strategies of sustainable development for society. Micro-energy technology has boasted a huge potential in market demand and attracted a great deal of interest in research and development since it is safe, efficient, and environmentally friendly and meets the goals for portable devices on the exterior, weight, and endurance. Although significant advancements have been achieved for proton exchange membrane fuel cells (PEMFCs) in recent years, PEMFCs still suffer from the key problems of low power density and fuel utilization, which are related, respectively, to poor reaction kinetics and methanol permeation through the membrane (viz., methanol crossover). Nanomaterials recently have attracted lots of attention owing to their distinguishing physical and chemical characteristics. Among them, carbon-based nanostructured materials such as graphene (G) and carbon nanotube (CNTs) have been successfully applied in fuel cells. PEMFC combined with nanostructured materials has remarkable improvements compared with the traditional fuel cells.



This research is financially supported by the National Natural Science Funds of China (Agreement Codes 61404037 and 61376113).


  1. 1.
    T.J. Yen, N. Fang, X. Zhang, G.Q. Lu, C.Y. Wang, A micro methanol fuel cell operating at near room temperature. Appl. Phys. Lett. 83, 4056–4058 (2003)CrossRefGoogle Scholar
  2. 2.
    C. Xu, T.S. Zhao, A new flow field design for polymer electrolyte-based fuel cells. Electrochem. Commun. 9, 497–503 (2007)CrossRefGoogle Scholar
  3. 3.
    H. Dai, H.M. Zhang, Q.T. Luo, Y. Zhang, C. Bi, Properties and fuel cell performance of proton exchange membranes prepared from disulfonated poly (sulfide sulfone). J. Power Sources 185, 19–25 (2008)CrossRefGoogle Scholar
  4. 4.
    Y.F. Zhang, P. Zhang, B. Zhang, J.M. Li, H.C. Deng, X.W. Liu, Development of an air-breathing direct methanol fuel cell with the cathode shutter current collectors. Int. J. Hydrog. Energy 35, 5638–5646 (2010)CrossRefGoogle Scholar
  5. 5.
    B. Zhang, Y.F. Zhang, H. He, J.M. Li, Z.Y. Yuan, C.R. Na, X.W. Liu, Development and performance analysis of a metallic micro-direct methanol fuel cell for high-performance applications. J. Power Sources 195, 7338–7348 (2010)CrossRefGoogle Scholar
  6. 6.
    Z. Yuan, Y. Zhang, J. Leng, Y. Gao, X. Liu, Development of a 4-cell air-breathing micro direct methanol fuel cell stack. J. Power Sources 202, 134–142 (2012)CrossRefGoogle Scholar
  7. 7.
    T.S. Zhao, C. Xu, R. Chen, W.W. Yang, Small direct methanol fuel cells with passive supply of reactants. J. Power Sources 191, 185–202 (2009)CrossRefGoogle Scholar
  8. 8.
    F. Achmad, S.K. Kamarudin, W.R.W. Daud, E.H. Majlan, Passive direct methanol fuel cells for portable electronic devices. Appl. Energy 88, 1681–1689 (2011)CrossRefGoogle Scholar
  9. 9.
    T.S. Zhao, C. Xu, R. Chen, W.W. Yang, Mass transport phenomena in direct methanol fuel cells. Prog. Energy Combust. Sci. 35, 275–292 (2009)CrossRefGoogle Scholar
  10. 10.
    R. Chen, T.S. Zhao, Porous current collectors for passive direct methanol fuel cells. Electrochim. Acta 52, 4317–4324 (2007)CrossRefGoogle Scholar
  11. 11.
    Y. Li, X.L. Zhang, L. Nie, Y.F. Zhang, X.W. Liu, Stainless steel fiber felt as cathode diffusion backing and current collector for a micro direct methanol fuel cell with low methanol crossover. J. Power Sources 245, 520–528 (2014)CrossRefGoogle Scholar
  12. 12.
    S.C. Yao, X.D. Tang, C.C. Hsieh, Y. Alyousef, M. Vladime, G.K. Fedder, C.H. Amon, Micro-electro-mechanical systems (MEMS)-based micro-scale direct methanol fuel cell development. Energy 31, 636–649 (2006)CrossRefGoogle Scholar
  13. 13.
    H. Peng, P. Chen, H. Chen, C. Chieng, T. Yeh, C. Pan, F. Tseng, Passive cathodic water/air management device for micro-direct methanol fuel cells. J. Power Sources 195, 7349–7358 (2010)CrossRefGoogle Scholar
  14. 14.
    Y.A. Zhou, X.H. Wang, X. Guo, X.P. Qiu, L.T. Liu, A water collecting and recycling structure for silicon-based micro direct methanol fuel cells. Int. J. Hydrog. Energy 37, 967–976 (2012)CrossRefGoogle Scholar
  15. 15.
    M.M.H.-S. rabadi, E. Dashtimoghadam, F.S. Majedi, S.H. Emami, H. Moaddel, A high-performance chitosan-based double layer proton exchange membrane with reduced methanol crossover. Int. J. Hydrog. Energy 36, 6105–6111 (2011)CrossRefGoogle Scholar
  16. 16.
    J. Kim, J.-D. Jeon, S.-Y. Kwak, Delamination of microporous layered silicate by acid-hydrothermal treatment and its use for reduction of methanol crossover in DMFC. Microporous Mesoporous Mater. 168, 148–154 (2013)CrossRefGoogle Scholar
  17. 17.
    H. Deligöz, S. Yılmaztürk, T. Gümüsoglu, Improved direct methanol fuel cell performance of layer-by-layer assembled composite and catalyst containing membranes. Electrochim. Acta 111, 791–796 (2013)CrossRefGoogle Scholar
  18. 18.
    Y. Xue, S. Chan, Layer-by-layer self-assembly of CHI/PVS-Nafion composite membrane for reduced methanol crossover and enhanced DMFC performance. Int. J. Hydrog. Energy 40, 1877–1885 (2015)CrossRefGoogle Scholar
  19. 19.
    Y.-C. Park, D.-H. Kim, S. Lim, S.-K.Y. Kim, D.-H. Peck, D.-H. Jung, Design of a MEA with multi-layer electrodes for high concentration methanol DMFCs. Int. J. Hydrog. Energy 37, 4717–4727 (2012)CrossRefGoogle Scholar
  20. 20.
    H. Deng, Y. Zhang, Z. Xue, L. Yang, X. Zhang, X. Liu, A CNT (carbon nanotube) paper as cathode gas diffusion electrode for water management of passive μ-DMFC (micro-direct methanol fuel cell) with highly concentrated methanol. Energy 82, 236–241 (2015)CrossRefGoogle Scholar
  21. 21.
    H. Deng, Y. Zhang, Y. Li, X. Zhang, X. Liu, A CNT-MEA compound structure of micro-direct methanol fuel cell for water management. Microelectron. Eng. 110, 288–291 (2013)CrossRefGoogle Scholar
  22. 22.
    S.H. Ng, J. Wang, Z.P. Guo, J. Chenb, et al., J. Electrochim. Acta 51, 23 (2005)CrossRefGoogle Scholar
  23. 23.
    R. Xue, S. Sang, H. Jin, Q. Shen, Y. Zhang, X. Liu, X. Zhang, Stainless steel fiber felt as the anode diffusion backing and current collector for μ-DMFC. Microelectron. Eng. 119, 159–163 (2014)CrossRefGoogle Scholar
  24. 24.
    S. Ye, F. Jiachun, W. Peiyi, Deposition of three-dimensional graphene aerogel on nickel foam as a binder-free supercapacitor electrode. ACS Appl. Mater. Interfaces 5, 7122–7129 (2013)CrossRefGoogle Scholar
  25. 25.
    Y. Zhang, R. Xue, X. Zhang, J. Song, X. Liu, rGO deposited in stainless steel fiber felt as mass transfer barrier layer for μ-DMFC. Energy 91, 1081–1086 (2015)CrossRefGoogle Scholar
  26. 26.
    J. Rajeswari, B. Viswanathan, Tungsten trioxide nanorods as supports for platinum in methanol oxidation. Mater. Chem. Phys. 106(2–3), 168–174 (2007)CrossRefGoogle Scholar
  27. 27.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, A.A. Firsov, Materials and methods: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRefGoogle Scholar
  28. 28.
    I. Fampiou, A. Ramasubramaniam, Binding of Pt nanoclusters to point defects in graphene: Adsorption, morphology, and electronic structure. J. Phys. Chem. C 116(11), 6543–6555 (2012)CrossRefGoogle Scholar
  29. 29.
    R. Kou, Y. Shao, D. Mei, Z. Nie, D. Wang, C. Wang, et al., Stabilization of electrocatalytic metal nanoparticles at metal-metal oxide-graphene triple junction points. J. Am. Chem. Soc. 133(8), 2541–2547 (2011)CrossRefGoogle Scholar
  30. 30.
    C. Huang, C. Li, G. Shi, Graphene based catalysts. Energy Environ. Sci. 5(10), 8848–8868 (2012)CrossRefGoogle Scholar
  31. 31.
    B. Seger, P.V. Kamat, Electrocatalytically active graphene-platinum nanocomposites. Role of 2-d carbon support in PEM fuel cells. J. Phys. Chem. C 113(19), 7990–7995 (2009)CrossRefGoogle Scholar
  32. 32.
    R.I. Jafri, T. Arockiados, N. Rajalakshmi, S. Ramaprabhu, Nanostructured Pt dispersed on graphene-multiwalled carbon nanotube hybrid nanomaterials as electrocatalyst for PEMFC. J. Electrochem. Soc. 157(6), B874 (2010)CrossRefGoogle Scholar
  33. 33.
    H. Meng, C. Wang, P.K. Shen, G. Wu, Palladium thorn clusters as catalysts for electrooxidation of formic acid. Energy Environ. Sci. 4(4), 1522–1526 (2011)CrossRefGoogle Scholar
  34. 34.
    Y.G. Zhou, J.J. Chen, F.B. Wang, Z.H. Sheng, X.H. Xia, A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells. Chem. Commun. 46(32), 5951–5953 (2010)CrossRefGoogle Scholar
  35. 35.
    S. Sharma, A. Ganguly, P. Papakonstantinou, X. Miao, M. Li, J.L. Hutchison, et al., Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol. J. Phys. Chem. C 114(45), 19459–19466 (2010)CrossRefGoogle Scholar
  36. 36.
    P. Kundu, C. Nethravathi, P.A. Deshpande, M. Rajamathi, G. Madras, N. Ravishankar, Ultrafast microwave-assisted route to surfactant-free ultrafine Pt nanoparticles on graphene: Synergistic co-reduction mechanism and high catalytic activity. Chem. Mater. 23(11), 2772 (2011)CrossRefGoogle Scholar
  37. 37.
    H. Chen, J. Duan, X. Zhang, Y. Zhang, C. Guo, L. Nie, et al., One step synthesis of Pt/CeO2-graphene catalyst by microwave-assisted ethylene glycol process for direct methanol fuel cell. Mater. Lett. 126, 9–12 (2014)CrossRefGoogle Scholar
  38. 38.
    Z. Wang, J. Xia, X. Guo, Y. Xia, S. Yao, F. Zhang, et al., Platinum/graphene functionalized by PDDA as a novel enzyme carrier for hydrogen peroxide biosensor. Anal. Methods 5(2), 483–488 (2012)CrossRefGoogle Scholar
  39. 39.
    J.D. Qiu, G.C. Wang, R.P. Liang, X.H. Xia, H.W. Yu, Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells. J. Phys. Chem. C 115(31), 15639–15645 (2011)CrossRefGoogle Scholar
  40. 40.
    Z. Cui, C.M. Li, S.P. Jiang, PtRu catalysts supported on heteropolyacid and chitosan functionalized carbon nanotubes for methanol oxidation reaction of fuel cells. Phys. Chem. Chem. Phys. 13(36), 16349 (2011)CrossRefGoogle Scholar
  41. 41.
    J. Duan, X. Liu, H. Chen, Y. Zhang, J. Du, X. Zhang, Poly(n-acetylaniline) functionalized graphene nanosheets supported Pt electrocatalysts for methanol oxidation. Microelectron. Eng. 121(4), 100–103 (2014)CrossRefGoogle Scholar
  42. 42.
    X. Zhang, W. Yuan, J. Duan, Y. Zhang, X. Liu, Graphene nanosheets modified by nitrogen-doped carbon layer to support Pt nanoparticles for direct methanol fuel cell. Microelectron. Eng. 141, 234–237 (2015)CrossRefGoogle Scholar
  43. 43.
    J.M. Léger, Mechanism aspects of methanol oxidation on platinum-based electrocatalysts. J. Appl. Electrochem. 31, 767–771 (2001)CrossRefGoogle Scholar
  44. 44.
    L. Dong, R.R.S. Gari, Z. Li, M.M. Craig, S. Hou, Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 48(3), 781–787 (2010)CrossRefGoogle Scholar
  45. 45.
    H. Li, X. Zhang, H. Pang, C. Huang, J. Chen, PMo12-functionalized graphene nanosheet-supported PtRu nanocatalysts for methanol electro-oxidation. J. Solid State Electrochem. 14(12), 2267–2274 (2010)CrossRefGoogle Scholar
  46. 46.
    H. Ji, M. Li, Y. Wang, F. Gao, Electrodeposition of graphene-supported PdPt nanoparticles with enhanced electrocatalytic activity. Electrochem. Commun. 24(1), 17–20 (2012)CrossRefGoogle Scholar
  47. 47.
    Y. Lu, Y. Jiang, H. Wu, W. Chen, Nano-PtPd cubes on graphene exhibit enhanced activity and durability in methanol electrooxidation after CO stripping–cleaning. J. Phys. Chem. C 117(6), 2926–2938 (2013)CrossRefGoogle Scholar
  48. 48.
    Y. Hu, P. Wu, Y. Yin, H. Zhang, C. Cai, Effects of structure, composition, and carbon support properties on the electrocatalytic activity of Pt-Ni-graphene nanocatalysts for the methanol oxidation. Appl. Catal. B Environ. 111(6), 208–217 (2011)Google Scholar
  49. 49.
    Y. Hu, P. Wu, H. Zhang, C. Cai, Synthesis of graphene-supported hollow Pt-Ni nanocatalysts for highly active electrocatalysis toward the methanol oxidation reaction. Electrochim. Acta 85(4), 314–321 (2012)CrossRefGoogle Scholar
  50. 50.
    Z.Y. Ji, G.X. Zhu, X.P. Shen, H. Zhou, C.M. Wu, M. Wang, Reduced graphene oxide supported FePt alloy nanoparticles with high electrocatalytic performance for methanol oxidation. New J. Chem. 36(9), 1774–1780 (2012)CrossRefGoogle Scholar
  51. 51.
    F. Han, X. Wang, J. Lian, Y. Wang, The effect of Sn content on the electrocatalytic properties of Pt-Sn nanoparticles dispersed on graphene nanosheets for the methanol oxidation reaction. Carbon 50(15), 5498–5504 (2012)CrossRefGoogle Scholar
  52. 52.
    C.L. Perkins, M.A. Henderson, C.H.F. Peden, G.S. Herman, Self-diffusion in ceria. J. Vacuum Sci. Tech. Vacuum Surfaces Films 19(4 PT 2), 217–218 (2001)Google Scholar
  53. 53.
    R. Awasthi, R.N. Singh, Graphene-supported Pd-Ru nanoparticles with superior methanol electrooxidation activity. Carbon 51(1), 282–289 (2013)CrossRefGoogle Scholar
  54. 54.
    P. Xi, F. Chen, G. Xie, C. Ma, H. Liu, C. Shao, et al., Surfactant free rGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Nanoscale 4(18), 5597 (2012)CrossRefGoogle Scholar
  55. 55.
    E.J. Lim, S.M. Choi, H.S. Min, Y. Kim, S. Lee, W.B. Kim, Highly dispersed ag nanoparticles on nanosheets of reduced graphene oxide for oxygen reduction reaction in alkaline media. Electrochem. Commun. 28(1), 100–103 (2013)CrossRefGoogle Scholar
  56. 56.
    X. Liu, X. Wang, P. He, L. Yi, Z. Liu, X. Yi, Influence of borohydride concentration on the synthesized au/graphene nanocomposites for direct borohydride fuel cell. J. Solid State Electrochem. 16(12), 3929–3937 (2012)CrossRefGoogle Scholar
  57. 57.
    S.J. Cho, A. Suri, X. Mei, J. Ouyang, In situ deposition of gold nanostructures with well-defined shapes on unfunctionalized reduced graphene oxide through chemical reduction of a dry gold precursor with ethylene glycol vapor. RSC Adv. 3(3), 1201–1209 (2012)Google Scholar
  58. 58.
    G. Goncalves, P.A.A.P. Marques, C.M. Granadeiro, H.I.S. Nogueira, M.K. Singh, J. Grácio, Surface modification of graphene nanosheets with gold nanoparticles: The role of oxygen moieties at graphene surface on gold nucleation and growth. Chem. Mater. 21, 4796–4802 (2009)CrossRefGoogle Scholar
  59. 59.
    M. Carmo, V.A. Paganin, J.M. Rosolen, E.R. Gonzalez, Alternative supports for the preparation of catalysts for low-temperature fuel cells: The use of carbon nanotubes. J. Power Sources 142(1), 169–176 (2005)CrossRefGoogle Scholar
  60. 60.
    E.J. Yoo, T. Okada, T. Akita, M. Kohyama, I. Honma, J. Nakamura, Sub-nano-Pt cluster supported on graphene nanosheets for CO tolerant catalysts in polymer electrolyte fuel cells. J. Power Sources 196(1), 110–115 (2011)CrossRefGoogle Scholar
  61. 61.
    E. Yeager, Electrocatalysts for molecular oxygen reduction. Electrochim. Acta 29, 1527–1537 (1984)CrossRefGoogle Scholar
  62. 62.
    R. Kou, Y. Shao, D. Wang, M.H. Engelhard, J.H. Kwak, J. Wang, et al., Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem. Commun. 11(5), 954–957 (2009)CrossRefGoogle Scholar
  63. 63.
    H.J. Kim, S.M. Choi, H.S. Min, S. Green, G.W. Huber, W.B. Kim, Efficient electrooxidation of biomass-derived glycerol over a graphene-supported PtRu electrocatalyst. Electrochem. Commun. 13(8), 890–893 (2011)CrossRefGoogle Scholar
  64. 64.
    Q. Yue, K. Zhang, X. Chen, L. Wang, J. Zhao, J. Liu, J. Jia, Generation of OH radicals in oxygen reduction reaction at Pt–Co nanoparticles supported on graphene in alkaline solutions. Chem. Commun. 46(19), 3369–3371 (2010)CrossRefGoogle Scholar
  65. 65.
    K. Zhang, Q. Yue, G. Chen, Y. Zhai, L. Wang, H. Wang, H. Li, Effects of acid treatment of Pt− Ni alloy nanoparticles@ graphene on the kinetics of the oxygen reduction reaction in acidic and alkaline solutions. J. Phys. Chem. C 115(2), 379–389 (2010)CrossRefGoogle Scholar
  66. 66.
    M. Liu, Y. Lu, W. Chen, Electrocatalysts: PdAg nanorings supported on graphene nanosheets: Highly methanol-tolerant cathode electrocatalyst for alkaline fuel cells (adv. Funct. Mater. 10/2013). Adv. Funct. Mater. 23(23), 1348–1348 (2013)CrossRefGoogle Scholar
  67. 67.
    Z.S. Wu, S. Yang, S. Yi, K. Parvez, X. Feng, K. Müllen, 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 134(22), 9082 (2012)CrossRefGoogle Scholar
  68. 68.
    C. Zhang, R. Hao, H. Yin, F. Liu, Y. Hou, Iron phthalocyanine and nitrogen-doped graphene composite as a novel non-precious catalyst for the oxygen reduction reaction. Nanoscale 4(23), 7326–7329 (2012)CrossRefGoogle Scholar
  69. 69.
    H.R. Byon, S. Jin, S.H. Yang, Graphene-based non-noble-metal catalysts for oxygen reduction reaction in acid. Chem. Mater. 23(23), 3421–3428 (2011)CrossRefGoogle Scholar
  70. 70.
    R.J. Toh, H.L. Poh, Z. Sofer, M. Pumera, Transition metal (Mn, Fe, Co, Ni)-doped graphene hybrids for electrocatalysis. Chem. Asian J. 8(6), 1295–1300 (2013)CrossRefGoogle Scholar
  71. 71.
    M. Lefèvre, E. Proietti, F. Jaouen, Dodelet, Supporting material for: Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324(5923), 71–74 (2009)CrossRefGoogle Scholar
  72. 72.
    Y. Jiang, Y. Lu, X. Lv, D. Han, Q. Zhang, L. Niu, et al., Enhanced catalytic performance of Pt-free iron phthalocyanine by graphene support for efficient oxygen reduction reaction. ACS Catal. 3(6), 1263–1271 (2013)CrossRefGoogle Scholar
  73. 73.
    Z. Yang, H. Nie, X. Chen, X. Chen, S. Huang, Recent progress in doped carbon nanomaterials as effective cathode catalysts for fuel cell oxygen reduction reaction. J. Power Sources 236(16), 238–249 (2013)CrossRefGoogle Scholar
  74. 74.
    C. Zhang, R. Hao, H. Liao, Y. Hou, Synthesis of amino-functionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in oxygen reduction reaction. Nano Energy 2(1), 88–97 (2013)CrossRefGoogle Scholar
  75. 75.
    C. He, Z. Li, M. Cai, M. Cai, J.Q. Wang, Z. Tian, et al., A strategy for mass production of self-assembled nitrogen-doped graphene as catalytic materials. J. Mater. Chem. A 1(4), 1401–1406 (2012)CrossRefGoogle Scholar
  76. 76.
    D. Geng, Y. Chen, Y. Chen, Y. Li, R. Li, X. Sun, et al., High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy Environ. Sci. 4(3), 760–764 (2011)CrossRefGoogle Scholar
  77. 77.
    J.B. Raoof, R. Ojani, S. Rashid-Nadimi, Electrochemical synthesis of bimetallic Au@Pt nanoparticles supported on gold film electrode by means of self-assembled monolayer. J. Electroanal. Chem. 641(1–2), 71–77 (2010)CrossRefGoogle Scholar
  78. 78.
    G. Chen, D. Xia, Z. Nie, Z. Wang, L. Wang, J. Zhang, et al., Facile synthesis of co-Pt hollow sphere electrocatalyst. Chem. Mater. 19(7), 1840–1844 (2007)CrossRefGoogle Scholar
  79. 79.
    C.S. Lim, K. Hola, A. Ambrosi, R. Zboril, M. Pumera, Graphene and carbon quantum dots electrochemistry. Electrochem. Commun. 52, 75–79 (2015)CrossRefGoogle Scholar
  80. 80.
    M. Bacon, S.J. Bradley, T. Nann, Graphene quantum dots. Part. Part. Syst. Charact. 31(4), 415–428 (2014)CrossRefGoogle Scholar
  81. 81.
    Q. Li, B.W. Noffke, Y. Liu, L.S. Li, Understanding fundamental processes in carbon materials with well-defined colloidal graphene quantum dots. Curr. Opin. Colloid Interface Sci. 20(5-6), 346–353 (2015)CrossRefGoogle Scholar
  82. 82.
    L. Lin, M. Rong, F. Luo, D. Chen, Y. Wang, X. Chen, Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. TrAC Trends Anal. Chem. 54, 83–102 (2013)CrossRefGoogle Scholar
  83. 83.
    F. Ksar, L. Ramos, B. Keita, L. Nadjo, P. Beaunier, H. Remita, Bimetallic palladium− gold nanostructures: Application in ethanol oxidation. Chem. Mater. 21(15), 3677–3683 (2009)CrossRefGoogle Scholar
  84. 84.
    L. Liu, E. Pippel, R. Scholz, U. Gösele, Nanoporous Pt-Co alloy nanowires: Fabrication, characterization, and electrocatalytic properties. Nano Lett. 9(12), 4352–4358 (2009)CrossRefGoogle Scholar
  85. 85.
    P. Du, Y. Zhu, J. Zhang, D. Xu, W. Peng, G. Zhang, et al., Metallic 1t phase MoS2 nanosheets as a highly efficient co-catalyst for the photocatalytic hydrogen evolution of CdS nanorods. RSC Adv. 6(78), 74394–74399 (2016)CrossRefGoogle Scholar
  86. 86.
    L.F. Zhang, G. Ou, L. Gu, Z.J. Peng, L.N. Wang, H. Wu, A highly active molybdenum multisulfide electrocatalyst for the hydrogen evolution reaction. RSC Adv. 6(109), 107158–107162 (2016)CrossRefGoogle Scholar
  87. 87.
    S. Mu, X. Chen, R. Sun, X. Liu, H. Wu, D. He, et al., Nano-size boron carbide intercalated graphene as high performance catalyst supports and electrodes for PEM fuel cells. Carbon 103, 449–456 (2016)CrossRefGoogle Scholar
  88. 88.
    P. Wu, H. Lv, T. Peng, D. He, S. Mu, Nano conductive ceramic wedged graphene composites as highly efficient metal supports for oxygen reduction. Sci. Rep. 4(2), 3968 (2014)Google Scholar
  89. 89.
    X. Chen, D. He, H. Wu, X. Zhao, J. Zhang, K. Cheng, et al., Platinized graphene/ceramics nano-sandwiched architectures and electrodes with outstanding performance for PEM fuel cells. Sci. Rep. 5, 16246 (2015)CrossRefGoogle Scholar
  90. 90.
    C. He, J. Tao, Y. Ke, Y. Qiu, Graphene-supported small tungsten carbide nanocrystals promoting a Pd catalyst towards formic acid oxidation. RSC Adv. 5(82), 66695–66703 (2015)CrossRefGoogle Scholar
  91. 91.
    M. Nawaz, W. Miran, J. Jang, D.S. Lee, One-step hydrothermal synthesis of porous 3d reduced graphene oxide/TiO2, aerogel for carbamazepine photodegradation in aqueous solution. Appl. Catal. B Environ. 203, 85–95 (2017)CrossRefGoogle Scholar
  92. 92.
    X. Jia, J. Wang, X. Zhu, T. Wang, F. Yang, W. Dong, et al., Synthesis of lightweight and flexible composite aerogel of mesoporous iron oxide threaded by carbon nanotubes for microwave absorption. J. Alloys Compd. 697, 138–146 (2016)CrossRefGoogle Scholar
  93. 93.
    X. Xu, Y. Sun, W. Qiao, X. Zhang, X. Chen, X. Song, et al., 3D MoS2-graphene hybrid aerogels as catalyst for enhanced efficient hydrogen evolution. Appl. Surf. Sci. 396(8), 1520–1527 (2017)CrossRefGoogle Scholar
  94. 94.
    J. Duan, X. Zhang, W. Yuan, H. Chen, S. Jiang, X. Liu, et al., Graphene oxide aerogel-supported Pt electrocatalysts for methanol oxidation. J. Power Sources 285, 76–79 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yufeng Zhang
    • 1
  • Rui Xue
    • 1
  • Weijian Yuan
    • 1
  • Xiaowei Liu
    • 1
  1. 1.MEMS Center, Harbin Institute of TechnologyHarbinChina

Personalised recommendations