Skip to main content

Nanomaterials in Proton Exchange Membrane Fuel Cells

  • Chapter
  • First Online:
Nanostructured Materials for Next-Generation Energy Storage and Conversion

Abstract

With the rapid development of modern science and technology in the current society, environmental conservation and taking advantage of new energy sources have become the core strategies of sustainable development for society. Micro-energy technology has boasted a huge potential in market demand and attracted a great deal of interest in research and development since it is safe, efficient, and environmentally friendly and meets the goals for portable devices on the exterior, weight, and endurance. Although significant advancements have been achieved for proton exchange membrane fuel cells (PEMFCs) in recent years, PEMFCs still suffer from the key problems of low power density and fuel utilization, which are related, respectively, to poor reaction kinetics and methanol permeation through the membrane (viz., methanol crossover). Nanomaterials recently have attracted lots of attention owing to their distinguishing physical and chemical characteristics. Among them, carbon-based nanostructured materials such as graphene (G) and carbon nanotube (CNTs) have been successfully applied in fuel cells. PEMFC combined with nanostructured materials has remarkable improvements compared with the traditional fuel cells.

Author Contributions

Weijian Yuan is responsible for the part of “Graphene Used in Catalyst” and “Other Nanomaterials Applied in PEMFC.” Rui Xue is responsible for the part of “CNT Used in Catalyst” and “Graphene Used as Barrier Layer.” Yufeng Zhang and Xiaowei Liu are in charge of the design, modification, and validation of the whole manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.J. Yen, N. Fang, X. Zhang, G.Q. Lu, C.Y. Wang, A micro methanol fuel cell operating at near room temperature. Appl. Phys. Lett. 83, 4056–4058 (2003)

    Article  CAS  Google Scholar 

  2. C. Xu, T.S. Zhao, A new flow field design for polymer electrolyte-based fuel cells. Electrochem. Commun. 9, 497–503 (2007)

    Article  CAS  Google Scholar 

  3. H. Dai, H.M. Zhang, Q.T. Luo, Y. Zhang, C. Bi, Properties and fuel cell performance of proton exchange membranes prepared from disulfonated poly (sulfide sulfone). J. Power Sources 185, 19–25 (2008)

    Article  CAS  Google Scholar 

  4. Y.F. Zhang, P. Zhang, B. Zhang, J.M. Li, H.C. Deng, X.W. Liu, Development of an air-breathing direct methanol fuel cell with the cathode shutter current collectors. Int. J. Hydrog. Energy 35, 5638–5646 (2010)

    Article  CAS  Google Scholar 

  5. B. Zhang, Y.F. Zhang, H. He, J.M. Li, Z.Y. Yuan, C.R. Na, X.W. Liu, Development and performance analysis of a metallic micro-direct methanol fuel cell for high-performance applications. J. Power Sources 195, 7338–7348 (2010)

    Article  CAS  Google Scholar 

  6. Z. Yuan, Y. Zhang, J. Leng, Y. Gao, X. Liu, Development of a 4-cell air-breathing micro direct methanol fuel cell stack. J. Power Sources 202, 134–142 (2012)

    Article  CAS  Google Scholar 

  7. T.S. Zhao, C. Xu, R. Chen, W.W. Yang, Small direct methanol fuel cells with passive supply of reactants. J. Power Sources 191, 185–202 (2009)

    Article  CAS  Google Scholar 

  8. F. Achmad, S.K. Kamarudin, W.R.W. Daud, E.H. Majlan, Passive direct methanol fuel cells for portable electronic devices. Appl. Energy 88, 1681–1689 (2011)

    Article  Google Scholar 

  9. T.S. Zhao, C. Xu, R. Chen, W.W. Yang, Mass transport phenomena in direct methanol fuel cells. Prog. Energy Combust. Sci. 35, 275–292 (2009)

    Article  CAS  Google Scholar 

  10. R. Chen, T.S. Zhao, Porous current collectors for passive direct methanol fuel cells. Electrochim. Acta 52, 4317–4324 (2007)

    Article  CAS  Google Scholar 

  11. Y. Li, X.L. Zhang, L. Nie, Y.F. Zhang, X.W. Liu, Stainless steel fiber felt as cathode diffusion backing and current collector for a micro direct methanol fuel cell with low methanol crossover. J. Power Sources 245, 520–528 (2014)

    Article  CAS  Google Scholar 

  12. S.C. Yao, X.D. Tang, C.C. Hsieh, Y. Alyousef, M. Vladime, G.K. Fedder, C.H. Amon, Micro-electro-mechanical systems (MEMS)-based micro-scale direct methanol fuel cell development. Energy 31, 636–649 (2006)

    Article  CAS  Google Scholar 

  13. H. Peng, P. Chen, H. Chen, C. Chieng, T. Yeh, C. Pan, F. Tseng, Passive cathodic water/air management device for micro-direct methanol fuel cells. J. Power Sources 195, 7349–7358 (2010)

    Article  CAS  Google Scholar 

  14. Y.A. Zhou, X.H. Wang, X. Guo, X.P. Qiu, L.T. Liu, A water collecting and recycling structure for silicon-based micro direct methanol fuel cells. Int. J. Hydrog. Energy 37, 967–976 (2012)

    Article  CAS  Google Scholar 

  15. M.M.H.-S. rabadi, E. Dashtimoghadam, F.S. Majedi, S.H. Emami, H. Moaddel, A high-performance chitosan-based double layer proton exchange membrane with reduced methanol crossover. Int. J. Hydrog. Energy 36, 6105–6111 (2011)

    Article  Google Scholar 

  16. J. Kim, J.-D. Jeon, S.-Y. Kwak, Delamination of microporous layered silicate by acid-hydrothermal treatment and its use for reduction of methanol crossover in DMFC. Microporous Mesoporous Mater. 168, 148–154 (2013)

    Article  CAS  Google Scholar 

  17. H. Deligöz, S. Yılmaztürk, T. Gümüsoglu, Improved direct methanol fuel cell performance of layer-by-layer assembled composite and catalyst containing membranes. Electrochim. Acta 111, 791–796 (2013)

    Article  Google Scholar 

  18. Y. Xue, S. Chan, Layer-by-layer self-assembly of CHI/PVS-Nafion composite membrane for reduced methanol crossover and enhanced DMFC performance. Int. J. Hydrog. Energy 40, 1877–1885 (2015)

    Article  CAS  Google Scholar 

  19. Y.-C. Park, D.-H. Kim, S. Lim, S.-K.Y. Kim, D.-H. Peck, D.-H. Jung, Design of a MEA with multi-layer electrodes for high concentration methanol DMFCs. Int. J. Hydrog. Energy 37, 4717–4727 (2012)

    Article  CAS  Google Scholar 

  20. H. Deng, Y. Zhang, Z. Xue, L. Yang, X. Zhang, X. Liu, A CNT (carbon nanotube) paper as cathode gas diffusion electrode for water management of passive μ-DMFC (micro-direct methanol fuel cell) with highly concentrated methanol. Energy 82, 236–241 (2015)

    Article  CAS  Google Scholar 

  21. H. Deng, Y. Zhang, Y. Li, X. Zhang, X. Liu, A CNT-MEA compound structure of micro-direct methanol fuel cell for water management. Microelectron. Eng. 110, 288–291 (2013)

    Article  CAS  Google Scholar 

  22. S.H. Ng, J. Wang, Z.P. Guo, J. Chenb, et al., J. Electrochim. Acta 51, 23 (2005)

    Article  CAS  Google Scholar 

  23. R. Xue, S. Sang, H. Jin, Q. Shen, Y. Zhang, X. Liu, X. Zhang, Stainless steel fiber felt as the anode diffusion backing and current collector for μ-DMFC. Microelectron. Eng. 119, 159–163 (2014)

    Article  CAS  Google Scholar 

  24. S. Ye, F. Jiachun, W. Peiyi, Deposition of three-dimensional graphene aerogel on nickel foam as a binder-free supercapacitor electrode. ACS Appl. Mater. Interfaces 5, 7122–7129 (2013)

    Article  CAS  Google Scholar 

  25. Y. Zhang, R. Xue, X. Zhang, J. Song, X. Liu, rGO deposited in stainless steel fiber felt as mass transfer barrier layer for μ-DMFC. Energy 91, 1081–1086 (2015)

    Article  CAS  Google Scholar 

  26. J. Rajeswari, B. Viswanathan, Tungsten trioxide nanorods as supports for platinum in methanol oxidation. Mater. Chem. Phys. 106(2–3), 168–174 (2007)

    Article  CAS  Google Scholar 

  27. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, A.A. Firsov, Materials and methods: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  CAS  Google Scholar 

  28. I. Fampiou, A. Ramasubramaniam, Binding of Pt nanoclusters to point defects in graphene: Adsorption, morphology, and electronic structure. J. Phys. Chem. C 116(11), 6543–6555 (2012)

    Article  CAS  Google Scholar 

  29. R. Kou, Y. Shao, D. Mei, Z. Nie, D. Wang, C. Wang, et al., Stabilization of electrocatalytic metal nanoparticles at metal-metal oxide-graphene triple junction points. J. Am. Chem. Soc. 133(8), 2541–2547 (2011)

    Article  CAS  Google Scholar 

  30. C. Huang, C. Li, G. Shi, Graphene based catalysts. Energy Environ. Sci. 5(10), 8848–8868 (2012)

    Article  CAS  Google Scholar 

  31. B. Seger, P.V. Kamat, Electrocatalytically active graphene-platinum nanocomposites. Role of 2-d carbon support in PEM fuel cells. J. Phys. Chem. C 113(19), 7990–7995 (2009)

    Article  CAS  Google Scholar 

  32. R.I. Jafri, T. Arockiados, N. Rajalakshmi, S. Ramaprabhu, Nanostructured Pt dispersed on graphene-multiwalled carbon nanotube hybrid nanomaterials as electrocatalyst for PEMFC. J. Electrochem. Soc. 157(6), B874 (2010)

    Article  CAS  Google Scholar 

  33. H. Meng, C. Wang, P.K. Shen, G. Wu, Palladium thorn clusters as catalysts for electrooxidation of formic acid. Energy Environ. Sci. 4(4), 1522–1526 (2011)

    Article  CAS  Google Scholar 

  34. Y.G. Zhou, J.J. Chen, F.B. Wang, Z.H. Sheng, X.H. Xia, A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells. Chem. Commun. 46(32), 5951–5953 (2010)

    Article  CAS  Google Scholar 

  35. S. Sharma, A. Ganguly, P. Papakonstantinou, X. Miao, M. Li, J.L. Hutchison, et al., Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol. J. Phys. Chem. C 114(45), 19459–19466 (2010)

    Article  CAS  Google Scholar 

  36. P. Kundu, C. Nethravathi, P.A. Deshpande, M. Rajamathi, G. Madras, N. Ravishankar, Ultrafast microwave-assisted route to surfactant-free ultrafine Pt nanoparticles on graphene: Synergistic co-reduction mechanism and high catalytic activity. Chem. Mater. 23(11), 2772 (2011)

    Article  CAS  Google Scholar 

  37. H. Chen, J. Duan, X. Zhang, Y. Zhang, C. Guo, L. Nie, et al., One step synthesis of Pt/CeO2-graphene catalyst by microwave-assisted ethylene glycol process for direct methanol fuel cell. Mater. Lett. 126, 9–12 (2014)

    Article  CAS  Google Scholar 

  38. Z. Wang, J. Xia, X. Guo, Y. Xia, S. Yao, F. Zhang, et al., Platinum/graphene functionalized by PDDA as a novel enzyme carrier for hydrogen peroxide biosensor. Anal. Methods 5(2), 483–488 (2012)

    Article  Google Scholar 

  39. J.D. Qiu, G.C. Wang, R.P. Liang, X.H. Xia, H.W. Yu, Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells. J. Phys. Chem. C 115(31), 15639–15645 (2011)

    Article  CAS  Google Scholar 

  40. Z. Cui, C.M. Li, S.P. Jiang, PtRu catalysts supported on heteropolyacid and chitosan functionalized carbon nanotubes for methanol oxidation reaction of fuel cells. Phys. Chem. Chem. Phys. 13(36), 16349 (2011)

    Article  CAS  Google Scholar 

  41. J. Duan, X. Liu, H. Chen, Y. Zhang, J. Du, X. Zhang, Poly(n-acetylaniline) functionalized graphene nanosheets supported Pt electrocatalysts for methanol oxidation. Microelectron. Eng. 121(4), 100–103 (2014)

    Article  CAS  Google Scholar 

  42. X. Zhang, W. Yuan, J. Duan, Y. Zhang, X. Liu, Graphene nanosheets modified by nitrogen-doped carbon layer to support Pt nanoparticles for direct methanol fuel cell. Microelectron. Eng. 141, 234–237 (2015)

    Article  CAS  Google Scholar 

  43. J.M. Léger, Mechanism aspects of methanol oxidation on platinum-based electrocatalysts. J. Appl. Electrochem. 31, 767–771 (2001)

    Article  Google Scholar 

  44. L. Dong, R.R.S. Gari, Z. Li, M.M. Craig, S. Hou, Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 48(3), 781–787 (2010)

    Article  CAS  Google Scholar 

  45. H. Li, X. Zhang, H. Pang, C. Huang, J. Chen, PMo12-functionalized graphene nanosheet-supported PtRu nanocatalysts for methanol electro-oxidation. J. Solid State Electrochem. 14(12), 2267–2274 (2010)

    Article  CAS  Google Scholar 

  46. H. Ji, M. Li, Y. Wang, F. Gao, Electrodeposition of graphene-supported PdPt nanoparticles with enhanced electrocatalytic activity. Electrochem. Commun. 24(1), 17–20 (2012)

    Article  CAS  Google Scholar 

  47. Y. Lu, Y. Jiang, H. Wu, W. Chen, Nano-PtPd cubes on graphene exhibit enhanced activity and durability in methanol electrooxidation after CO stripping–cleaning. J. Phys. Chem. C 117(6), 2926–2938 (2013)

    Article  CAS  Google Scholar 

  48. Y. Hu, P. Wu, Y. Yin, H. Zhang, C. Cai, Effects of structure, composition, and carbon support properties on the electrocatalytic activity of Pt-Ni-graphene nanocatalysts for the methanol oxidation. Appl. Catal. B Environ. 111(6), 208–217 (2011)

    Google Scholar 

  49. Y. Hu, P. Wu, H. Zhang, C. Cai, Synthesis of graphene-supported hollow Pt-Ni nanocatalysts for highly active electrocatalysis toward the methanol oxidation reaction. Electrochim. Acta 85(4), 314–321 (2012)

    Article  CAS  Google Scholar 

  50. Z.Y. Ji, G.X. Zhu, X.P. Shen, H. Zhou, C.M. Wu, M. Wang, Reduced graphene oxide supported FePt alloy nanoparticles with high electrocatalytic performance for methanol oxidation. New J. Chem. 36(9), 1774–1780 (2012)

    Article  CAS  Google Scholar 

  51. F. Han, X. Wang, J. Lian, Y. Wang, The effect of Sn content on the electrocatalytic properties of Pt-Sn nanoparticles dispersed on graphene nanosheets for the methanol oxidation reaction. Carbon 50(15), 5498–5504 (2012)

    Article  CAS  Google Scholar 

  52. C.L. Perkins, M.A. Henderson, C.H.F. Peden, G.S. Herman, Self-diffusion in ceria. J. Vacuum Sci. Tech. Vacuum Surfaces Films 19(4 PT 2), 217–218 (2001)

    Google Scholar 

  53. R. Awasthi, R.N. Singh, Graphene-supported Pd-Ru nanoparticles with superior methanol electrooxidation activity. Carbon 51(1), 282–289 (2013)

    Article  CAS  Google Scholar 

  54. P. Xi, F. Chen, G. Xie, C. Ma, H. Liu, C. Shao, et al., Surfactant free rGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Nanoscale 4(18), 5597 (2012)

    Article  CAS  Google Scholar 

  55. E.J. Lim, S.M. Choi, H.S. Min, Y. Kim, S. Lee, W.B. Kim, Highly dispersed ag nanoparticles on nanosheets of reduced graphene oxide for oxygen reduction reaction in alkaline media. Electrochem. Commun. 28(1), 100–103 (2013)

    Article  CAS  Google Scholar 

  56. X. Liu, X. Wang, P. He, L. Yi, Z. Liu, X. Yi, Influence of borohydride concentration on the synthesized au/graphene nanocomposites for direct borohydride fuel cell. J. Solid State Electrochem. 16(12), 3929–3937 (2012)

    Article  CAS  Google Scholar 

  57. S.J. Cho, A. Suri, X. Mei, J. Ouyang, In situ deposition of gold nanostructures with well-defined shapes on unfunctionalized reduced graphene oxide through chemical reduction of a dry gold precursor with ethylene glycol vapor. RSC Adv. 3(3), 1201–1209 (2012)

    Google Scholar 

  58. G. Goncalves, P.A.A.P. Marques, C.M. Granadeiro, H.I.S. Nogueira, M.K. Singh, J. Grácio, Surface modification of graphene nanosheets with gold nanoparticles: The role of oxygen moieties at graphene surface on gold nucleation and growth. Chem. Mater. 21, 4796–4802 (2009)

    Article  CAS  Google Scholar 

  59. M. Carmo, V.A. Paganin, J.M. Rosolen, E.R. Gonzalez, Alternative supports for the preparation of catalysts for low-temperature fuel cells: The use of carbon nanotubes. J. Power Sources 142(1), 169–176 (2005)

    Article  CAS  Google Scholar 

  60. E.J. Yoo, T. Okada, T. Akita, M. Kohyama, I. Honma, J. Nakamura, Sub-nano-Pt cluster supported on graphene nanosheets for CO tolerant catalysts in polymer electrolyte fuel cells. J. Power Sources 196(1), 110–115 (2011)

    Article  CAS  Google Scholar 

  61. E. Yeager, Electrocatalysts for molecular oxygen reduction. Electrochim. Acta 29, 1527–1537 (1984)

    Article  CAS  Google Scholar 

  62. R. Kou, Y. Shao, D. Wang, M.H. Engelhard, J.H. Kwak, J. Wang, et al., Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem. Commun. 11(5), 954–957 (2009)

    Article  CAS  Google Scholar 

  63. H.J. Kim, S.M. Choi, H.S. Min, S. Green, G.W. Huber, W.B. Kim, Efficient electrooxidation of biomass-derived glycerol over a graphene-supported PtRu electrocatalyst. Electrochem. Commun. 13(8), 890–893 (2011)

    Article  CAS  Google Scholar 

  64. Q. Yue, K. Zhang, X. Chen, L. Wang, J. Zhao, J. Liu, J. Jia, Generation of OH radicals in oxygen reduction reaction at Pt–Co nanoparticles supported on graphene in alkaline solutions. Chem. Commun. 46(19), 3369–3371 (2010)

    Article  CAS  Google Scholar 

  65. K. Zhang, Q. Yue, G. Chen, Y. Zhai, L. Wang, H. Wang, H. Li, Effects of acid treatment of Pt− Ni alloy nanoparticles@ graphene on the kinetics of the oxygen reduction reaction in acidic and alkaline solutions. J. Phys. Chem. C 115(2), 379–389 (2010)

    Article  Google Scholar 

  66. M. Liu, Y. Lu, W. Chen, Electrocatalysts: PdAg nanorings supported on graphene nanosheets: Highly methanol-tolerant cathode electrocatalyst for alkaline fuel cells (adv. Funct. Mater. 10/2013). Adv. Funct. Mater. 23(23), 1348–1348 (2013)

    Article  CAS  Google Scholar 

  67. Z.S. Wu, S. Yang, S. Yi, K. Parvez, X. Feng, K. Müllen, 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 134(22), 9082 (2012)

    Article  CAS  Google Scholar 

  68. C. Zhang, R. Hao, H. Yin, F. Liu, Y. Hou, Iron phthalocyanine and nitrogen-doped graphene composite as a novel non-precious catalyst for the oxygen reduction reaction. Nanoscale 4(23), 7326–7329 (2012)

    Article  CAS  Google Scholar 

  69. H.R. Byon, S. Jin, S.H. Yang, Graphene-based non-noble-metal catalysts for oxygen reduction reaction in acid. Chem. Mater. 23(23), 3421–3428 (2011)

    Article  CAS  Google Scholar 

  70. R.J. Toh, H.L. Poh, Z. Sofer, M. Pumera, Transition metal (Mn, Fe, Co, Ni)-doped graphene hybrids for electrocatalysis. Chem. Asian J. 8(6), 1295–1300 (2013)

    Article  CAS  Google Scholar 

  71. M. Lefèvre, E. Proietti, F. Jaouen, Dodelet, Supporting material for: Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324(5923), 71–74 (2009)

    Article  Google Scholar 

  72. Y. Jiang, Y. Lu, X. Lv, D. Han, Q. Zhang, L. Niu, et al., Enhanced catalytic performance of Pt-free iron phthalocyanine by graphene support for efficient oxygen reduction reaction. ACS Catal. 3(6), 1263–1271 (2013)

    Article  CAS  Google Scholar 

  73. Z. Yang, H. Nie, X. Chen, X. Chen, S. Huang, Recent progress in doped carbon nanomaterials as effective cathode catalysts for fuel cell oxygen reduction reaction. J. Power Sources 236(16), 238–249 (2013)

    Article  CAS  Google Scholar 

  74. C. Zhang, R. Hao, H. Liao, Y. Hou, Synthesis of amino-functionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in oxygen reduction reaction. Nano Energy 2(1), 88–97 (2013)

    Article  CAS  Google Scholar 

  75. C. He, Z. Li, M. Cai, M. Cai, J.Q. Wang, Z. Tian, et al., A strategy for mass production of self-assembled nitrogen-doped graphene as catalytic materials. J. Mater. Chem. A 1(4), 1401–1406 (2012)

    Article  Google Scholar 

  76. D. Geng, Y. Chen, Y. Chen, Y. Li, R. Li, X. Sun, et al., High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy Environ. Sci. 4(3), 760–764 (2011)

    Article  CAS  Google Scholar 

  77. J.B. Raoof, R. Ojani, S. Rashid-Nadimi, Electrochemical synthesis of bimetallic Au@Pt nanoparticles supported on gold film electrode by means of self-assembled monolayer. J. Electroanal. Chem. 641(1–2), 71–77 (2010)

    Article  CAS  Google Scholar 

  78. G. Chen, D. Xia, Z. Nie, Z. Wang, L. Wang, J. Zhang, et al., Facile synthesis of co-Pt hollow sphere electrocatalyst. Chem. Mater. 19(7), 1840–1844 (2007)

    Article  CAS  Google Scholar 

  79. C.S. Lim, K. Hola, A. Ambrosi, R. Zboril, M. Pumera, Graphene and carbon quantum dots electrochemistry. Electrochem. Commun. 52, 75–79 (2015)

    Article  CAS  Google Scholar 

  80. M. Bacon, S.J. Bradley, T. Nann, Graphene quantum dots. Part. Part. Syst. Charact. 31(4), 415–428 (2014)

    Article  CAS  Google Scholar 

  81. Q. Li, B.W. Noffke, Y. Liu, L.S. Li, Understanding fundamental processes in carbon materials with well-defined colloidal graphene quantum dots. Curr. Opin. Colloid Interface Sci. 20(5-6), 346–353 (2015)

    Article  CAS  Google Scholar 

  82. L. Lin, M. Rong, F. Luo, D. Chen, Y. Wang, X. Chen, Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. TrAC Trends Anal. Chem. 54, 83–102 (2013)

    Article  Google Scholar 

  83. F. Ksar, L. Ramos, B. Keita, L. Nadjo, P. Beaunier, H. Remita, Bimetallic palladium− gold nanostructures: Application in ethanol oxidation. Chem. Mater. 21(15), 3677–3683 (2009)

    Article  CAS  Google Scholar 

  84. L. Liu, E. Pippel, R. Scholz, U. Gösele, Nanoporous Pt-Co alloy nanowires: Fabrication, characterization, and electrocatalytic properties. Nano Lett. 9(12), 4352–4358 (2009)

    Article  CAS  Google Scholar 

  85. P. Du, Y. Zhu, J. Zhang, D. Xu, W. Peng, G. Zhang, et al., Metallic 1t phase MoS2 nanosheets as a highly efficient co-catalyst for the photocatalytic hydrogen evolution of CdS nanorods. RSC Adv. 6(78), 74394–74399 (2016)

    Article  CAS  Google Scholar 

  86. L.F. Zhang, G. Ou, L. Gu, Z.J. Peng, L.N. Wang, H. Wu, A highly active molybdenum multisulfide electrocatalyst for the hydrogen evolution reaction. RSC Adv. 6(109), 107158–107162 (2016)

    Article  CAS  Google Scholar 

  87. S. Mu, X. Chen, R. Sun, X. Liu, H. Wu, D. He, et al., Nano-size boron carbide intercalated graphene as high performance catalyst supports and electrodes for PEM fuel cells. Carbon 103, 449–456 (2016)

    Article  CAS  Google Scholar 

  88. P. Wu, H. Lv, T. Peng, D. He, S. Mu, Nano conductive ceramic wedged graphene composites as highly efficient metal supports for oxygen reduction. Sci. Rep. 4(2), 3968 (2014)

    Google Scholar 

  89. X. Chen, D. He, H. Wu, X. Zhao, J. Zhang, K. Cheng, et al., Platinized graphene/ceramics nano-sandwiched architectures and electrodes with outstanding performance for PEM fuel cells. Sci. Rep. 5, 16246 (2015)

    Article  CAS  Google Scholar 

  90. C. He, J. Tao, Y. Ke, Y. Qiu, Graphene-supported small tungsten carbide nanocrystals promoting a Pd catalyst towards formic acid oxidation. RSC Adv. 5(82), 66695–66703 (2015)

    Article  CAS  Google Scholar 

  91. M. Nawaz, W. Miran, J. Jang, D.S. Lee, One-step hydrothermal synthesis of porous 3d reduced graphene oxide/TiO2, aerogel for carbamazepine photodegradation in aqueous solution. Appl. Catal. B Environ. 203, 85–95 (2017)

    Article  CAS  Google Scholar 

  92. X. Jia, J. Wang, X. Zhu, T. Wang, F. Yang, W. Dong, et al., Synthesis of lightweight and flexible composite aerogel of mesoporous iron oxide threaded by carbon nanotubes for microwave absorption. J. Alloys Compd. 697, 138–146 (2016)

    Article  Google Scholar 

  93. X. Xu, Y. Sun, W. Qiao, X. Zhang, X. Chen, X. Song, et al., 3D MoS2-graphene hybrid aerogels as catalyst for enhanced efficient hydrogen evolution. Appl. Surf. Sci. 396(8), 1520–1527 (2017)

    Article  CAS  Google Scholar 

  94. J. Duan, X. Zhang, W. Yuan, H. Chen, S. Jiang, X. Liu, et al., Graphene oxide aerogel-supported Pt electrocatalysts for methanol oxidation. J. Power Sources 285, 76–79 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research is financially supported by the National Natural Science Funds of China (Agreement Codes 61404037 and 61376113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Y., Xue, R., Yuan, W., Liu, X. (2018). Nanomaterials in Proton Exchange Membrane Fuel Cells. In: Li, F., Bashir, S., Liu, J. (eds) Nanostructured Materials for Next-Generation Energy Storage and Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56364-9_7

Download citation

Publish with us

Policies and ethics