Advertisement

Noble Metal Electrocatalysts for Anode and Cathode in Polymer Electrolyte Fuel Cells

  • Surbhi Sharma
  • Carolina Musse Branco
Chapter

Abstract

The chapter begins with a brief introduction of the importance and role of electrocatalysts in fuel cells. The following sections discuss the current state-of-the-art for noble metal electrocatalysts in polymer electrolyte fuel cells (PEFCs) along with an examination of recent developments in various noble metal (Pt, Pd, Au, Ag, Ir, Ru) electrocatalysts used in anode and cathode of a PEFC. Various 0D, 1D, 2D, and 3D nanostructured morphologies of electrocatalysts are scrutinized. Different factors responsible for influencing and manipulating the electrocatalytic response and the stability of electrocatalysts are also discussed. The need and scope for recycling of precious metal electrocatalysts are examined and finally expected future trends are deliberated.

References

  1. 1.
    J.-J. Hwang, Renew. Sust. Energ. Rev. 19, 220–229 (2013)CrossRefGoogle Scholar
  2. 2.
    J. Stacy, Y.N. Regmi, B. Leonard, M. Fan, Renew. Sust. Energ. Rev. 69, 401–414 (2017)CrossRefGoogle Scholar
  3. 3.
    G.A. Florida's, P. Christodoulides, Environ. Int. 35(2), 390–401 (2009)CrossRefGoogle Scholar
  4. 4.
    M. Irani, M. Fan, H. Ismail, A. Tewari, B. Dutcher, A.G. Russell, Nano Energy 11, 235–246 (2015)CrossRefGoogle Scholar
  5. 5.
    Y. Kong, G. Jiang, M. Fan, X. Shen, S. Cui, A.G. Russell, Chem. Commun. 50(81), 12158–12161 (2014)CrossRefGoogle Scholar
  6. 6.
    S. Cui, W. Cheng, X. Shen, M. Fan, A. Russell, Z. Wu, X. Yi, Energy Environ. Sci. 4(6), 2070–2074 (2011)CrossRefGoogle Scholar
  7. 7.
    M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Chem. Rev. 116, 3594–3657 (2016)CrossRefGoogle Scholar
  8. 8.
    M. Matsunaga, T. Fukushima, K. Ojima, World Electric Vehicle Journal 3, 2032–6653 (2009)CrossRefGoogle Scholar
  9. 9.
    S. Aso, M. Kizaki, Y. Nonobe, Development of fuel cell hybrid vehicles in Toyota, in Proceedings of the Power Conversion Conference, Nagoya, Apr 2007.  https://doi.org/10.1109/PCCON.2007.37317
  10. 10.
    D. Wenger, W. Polifke, E. Schmidt-Ihn, T. Abdel-Baset, S. Maus, Int. J. Hydrog. Energy 34, 6265–6270 (2009)CrossRefGoogle Scholar
  11. 11.
  12. 12.
    V.P. McConnell, Fuel Cells Bull. 1, 12–15 (2007)Google Scholar
  13. 13.
    J.R. Healey, Fuel cell cars, in Earth 3.0, Scientific American (Sept 2008)Google Scholar
  14. 14.
    O.T. Holton, J.W. Stevenson, Platin. Met. Rev. 57(4), 259–271 (2013)CrossRefGoogle Scholar
  15. 15.
    Fuel cell technologies office multi-year research, development, and demonstration plan. https://energy.gov/sites/prod/files/2014/12/f19/fcto_myrdd_fuel_cells.pdf
  16. 16.
    M. Chokai, T. Daidou, Y. Nabae, ECS Trans. 64(3), 261–270 (2014)CrossRefGoogle Scholar
  17. 17.
    G. Wu, K.L. More, C.M. Johnston, P. Zelenay, Science 332(6028), 443–447 (2011)CrossRefGoogle Scholar
  18. 18.
    C.H. Choi, H.-K. Lim, M.W. Chung, J.C. Park, H. Shin, H. Kim, S.I. Woo, J. Am. Chem. Soc. 136(25), 9070–9077 (2014)CrossRefGoogle Scholar
  19. 19.
    M.P. Rodgers, L.J. Bonville, H.R. Kunz, D.K. Slattery, J.M. Fenton, Chem. Rev. 112(11), 6075–6103 (2012)CrossRefGoogle Scholar
  20. 20.
    D. Cao, G.Q. Lu, A. Wieckowski, S.A. Wasileski, M. Neurock, J. Phys. Chem. B 109(23), 11622–11633 (2005)CrossRefGoogle Scholar
  21. 21.
    S. Sriramulu, T.D. Jarvi, E.M. Stuve, J. Electroanal. Chem. 467, 132–142 (1999)CrossRefGoogle Scholar
  22. 22.
    C. Song, J. Zhang, Electrocatalytic oxygen reduction reaction, in PEM Fuel Cell Electrocatalysts and Catalyst Layers, (Springer, London, 2008), pp. 89–134CrossRefGoogle Scholar
  23. 23.
    R.F. Morais, A.A. Franco, P. Sautet, D. Loffred, Phys. Chem. Chem. Phys. 17, 11392–11400 (2015)CrossRefGoogle Scholar
  24. 24.
    L. Zhang, Z. Xia, J. Phys. Chem. C115(22), 11170–11176 (2011)Google Scholar
  25. 25.
    D.-H. Lim, J. Wilcox, J. Phys. Chem. C 116(5), 3653–3660 (2012)CrossRefGoogle Scholar
  26. 26.
    E. Antolini, Appl. Catal. B Environ. 181, 298–313 (2016)CrossRefGoogle Scholar
  27. 27.
    J. Zhang, Q. Kuang, Y. Jiang, Z. Xie, Nano Today 11, 661–667 (2016)CrossRefGoogle Scholar
  28. 28.
    O. Deutschmann, H. Knözinger, K. Kochloefl, T. Turek, Heterogeneous catalysis and solid catalysts, in Ullmann’s Encyclopedia of Industrial Chemistry (2009).  https://doi.org/10.1002/14356007.a05_313.pub2
  29. 29.
    J. Cheng, P. Hu, J. Am. Chem. Soc. 130(33), 10868–10869 (2008)CrossRefGoogle Scholar
  30. 30.
    T. Bligaard, J.K. Nørskov, S. Dahl, J. Matthiesen, C.H. Christensen, J. Sehested, J. Catal. 224, 206–217 (2004)CrossRefGoogle Scholar
  31. 31.
    P. Sabatier, Hydrogénations et deshydrogénations par catalyze. Ber. der Dtsch. Chem. Ges. 44(3), 1984–2001 (1911)CrossRefGoogle Scholar
  32. 32.
    A.R. Morris, M.D. Skoglund, J.H. Holles, Appl. Catal. A Gen. 489, 98–110 (2015)CrossRefGoogle Scholar
  33. 33.
    K.A. Kuttiyiel, K. Sasaki, Y.M. Choi, D. Su, P. Liu, R.R. Adzic, Energy Environ. Sci. 5(1), 5297–5304 (2012)CrossRefGoogle Scholar
  34. 34.
    K. Zhou, Y. Li, Angew. Chem. Int. Ed. 51(3), 602–613 (2012)CrossRefGoogle Scholar
  35. 35.
    J.X. Wang, H. Inada, L. Wu, Y. Zhu, Y. Choi, P. Liu, W.P. Zhou, R.R. Adzic, J. Am. Chem. Soc. 131(47), 17298–17302 (2009)CrossRefGoogle Scholar
  36. 36.
    J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, The. J. Phys. Chem. B 108(46), 17886–17892 (2004)CrossRefGoogle Scholar
  37. 37.
    G. Centi, S. Perathoner, Eur. J. Inorg. Chem. 2009, 3851–3878 (2009)CrossRefGoogle Scholar
  38. 38.
    A. Chen, P.F. Holt-Hindle, Chem. Rev. 110, 3767–3804 (2010)CrossRefGoogle Scholar
  39. 39.
    Y. Qiao, C.M. Li, J. Mater. Chem. 21, 4027–4036 (2011)CrossRefGoogle Scholar
  40. 40.
    L. Bu, N. Zhang, S. Guo, X. Zhang, J. Li, J. Yao, T. Wu, G. Lu, J.-Y. Ma, D. Su, X. Huang, Science 354, 1410–1414 (2016)CrossRefGoogle Scholar
  41. 41.
    C.W.B. Bezerra, L. Zhang, H. Liu, K. Lee, A.L.B. Marques, E.P. Marques, H. Wang, J. Zhang, J. Power Sources 173, 891–908 (2007)CrossRefGoogle Scholar
  42. 42.
    S. Garbarino, A. Pereira, C. Hamel, É. Irissou, M. Chaker, D. Guay, J. Phys. Chem. C 114, 2980–2988 (2010)CrossRefGoogle Scholar
  43. 43.
    Y. Liu, L. Zhang, B.G. Willis, W.E. Mustain, ACS Catal. 5(3), 1560–1567 (2015)CrossRefGoogle Scholar
  44. 44.
    L.R. Merte, F. Behafarid, D.J. Miller, D. Friebel, S. Cho, F. Mbuga, D. Sokaras, R. Alonso-Mori, D. Weng T-C Nordlund, A. Nilsson, B.R. Cuenya, ACS Catal. 2(11), 2371–2376 (2012)CrossRefGoogle Scholar
  45. 45.
    K. Yamamoto, T. Imaoka, W.-J. Chun, O. Enoki, H. Katoh, M. Takenaga, A. Sonoi, Nat. Chem. 1(5), 397–402 (2009)CrossRefGoogle Scholar
  46. 46.
    N.M. Marković, T.J. Schmidt, V. Stamenković, P.N. Ross, Fuel Cells 1(2), 105–116 (2001)CrossRefGoogle Scholar
  47. 47.
    M.D. Maciá, J.M. Campiña, E. Herrero, J.M. Feliu, J. Electroanal. Chem. 564(0), 141–150 (2004)CrossRefGoogle Scholar
  48. 48.
    A. Kuzume, E. Herrero, J.M. Feliu, J. Electroanal. Chem. 599(2), 333–343 (2007)CrossRefGoogle Scholar
  49. 49.
    A.M. Gómez-Marín, R. Rizo, J.M. Feliu, Beilstein J. Nanotechnol. 4, 956–967 (2013)CrossRefGoogle Scholar
  50. 50.
    A.M. Gómez-Marín, J.M. Feliu, Catal. Today 244(0), 172–176 (2015)CrossRefGoogle Scholar
  51. 51.
    N. Hoshi, M. Nakamura, A. Hitotsuyanagi, Electrochim. Acta 112, 899–904 (2013)CrossRefGoogle Scholar
  52. 52.
    B. Wu, N. Zheng, Nano Today 8(2), 168–197 (2013)CrossRefGoogle Scholar
  53. 53.
    B.Y. Xia, H.B. Wu, X. Wang, X.W. Lou, Angew. Chem. 125(47), 12563–12566 (2013)CrossRefGoogle Scholar
  54. 54.
    D. Li, C. Wang, D.S. Strmcnik, D.V. Tripkovic, X. Sun, Y. Kang, M. Chi, J.D. Snyder, D. Van der Vliet, Y. Tsai, V.R. Stamenkovic, S. Sun, N.M. Markovic, Energy Environ. Sci. 7(12), 4061–4069 (2014)CrossRefGoogle Scholar
  55. 55.
    M. Shao, A. Peles, K. Shoemaker, Nano Lett. 11, 3714–3719 (2011)CrossRefGoogle Scholar
  56. 56.
    S. Mukerjee, J. McBreen, J. Electroanal. Chem. 448, 163–171 (1998)CrossRefGoogle Scholar
  57. 57.
    Y. Takasu, Y.N. Ohashi, X.G. Zhang, Y. Murakami, H. Minagawa, S. Sato, K. Yahikozawa, Electrochim. Acta 41, 2595–2600 (1996)CrossRefGoogle Scholar
  58. 58.
    S. Park, Y. Xie, M.J. Weaver, Langmuir 18, 5792–5798 (2002)CrossRefGoogle Scholar
  59. 59.
    K. Bergamaski, A.L.N. Pinheiro, E. Teixeira-Neto, F.C. Nart, J. Phys. Chem. B 110(39), 19271–19279 (2006)CrossRefGoogle Scholar
  60. 60.
    B.D. McNicol, P. Attwood, R.T. Short, J. Chem. Soc. Faraday Trans. 77, 2017–2028 (1981)CrossRefGoogle Scholar
  61. 61.
    S.J. Yoo, Y.T. Jeon, Y.H. Cho, K.S. Lee, Y.E. Sung, Electrochim. Acta 55, 7939–7944 (2010)CrossRefGoogle Scholar
  62. 62.
    M. Shao, J. Power Sources 196(5), 2433–2444 (2011)CrossRefGoogle Scholar
  63. 63.
    M. Shao, T. Yu, J.H. Odell, M. Jin, Y. Xia, Chem. Commun. 47(23), 6566–6568 (2011)CrossRefGoogle Scholar
  64. 64.
    L. Ou, S. Chen, J. Phys. Chem. C 117(3), 1342–1349 (2013)CrossRefGoogle Scholar
  65. 65.
    Z. Peng, H. Yang, Nano Today 4, 143–164 (2009)CrossRefGoogle Scholar
  66. 66.
    L. Zhang, L.T. Roling, X. Wang, M. Vara, M. Chi, J. Liu, S. Choi, J. Park, J.A. Herron, Z. Xie, M. Mavrikakis, Y. Xia, Science 349(6246), 412–416 (2015)CrossRefGoogle Scholar
  67. 67.
    X. Wang, L. Figueroa-Cosme, X. Yang, M. Luo, J. Liu, Z. Xie, Y. Xia, Nano Lett. 16(2), 1467–1471 (2016)CrossRefGoogle Scholar
  68. 68.
    Y. Lu, S. Du, R. Steinberger-Wilkens, Appl. Catal. B Environ. 199, 292–314 (2016)CrossRefGoogle Scholar
  69. 69.
    R.K. Joshi, J.J. Schneider, Chem. Soc. Rev. 41, 5285–5312 (2012)CrossRefGoogle Scholar
  70. 70.
    C. Koenigsmann, S.S. Wong, Energy Environ. Sci. 4, 1161–1176 (2011)CrossRefGoogle Scholar
  71. 71.
    Y. Shao, G. Yin, Y. Gao, J. Power Sources 171, 558–566 (2007)CrossRefGoogle Scholar
  72. 72.
    K. MTM (ed.), Fuel Cell Catalysts (Wiley-Interscience, Hoboken, 2009)Google Scholar
  73. 73.
    C. Koenigsmann, W.P. Zhou, R.R. Adzic, E. Sutter, S.S. Wong, Nano Lett. 10, 2806–2811 (2010)CrossRefGoogle Scholar
  74. 74.
    K.S. Napolskii, P.J. Barczuk, S.Y. Vassiliev, A.G. Veresov, G.A. Tsirlina, P.J. Kulesza, Electrochim. Acta 52, 7910–7979 (2007)CrossRefGoogle Scholar
  75. 75.
    S. Sun, F. Jaouen, J.-P. Dodelet, Adv. Mater. 20, 3900–3904 (2008)CrossRefGoogle Scholar
  76. 76.
    L. Xiao, L. Zhuang, Y. Liu, J. Lu, H.D. Abruña, J. Am. Chem. Soc. 131(2), 602–608 (2009)CrossRefGoogle Scholar
  77. 77.
    S. Choi, H. Jeong, K.-H. Choi, J.Y. Song, J. Kim, ACS Appl. Mater. Interfaces 6(4), 3002–3007 (2014)CrossRefGoogle Scholar
  78. 78.
    T.H. Yeh, C.W. Liu, H.S. Chen, K.W. Wang, Electrochem. Commun. 31, 125–128 (2013)CrossRefGoogle Scholar
  79. 79.
    Y.C. Tseng, H.S. Chen, C.W. Liu, T.H. Yeh, K.W. Wang, J. Mater. Chem. A 2, 4270–4275 (2014)CrossRefGoogle Scholar
  80. 80.
    Y.T. Liang, S.P. Lin, C.W. Liu, S.R. Chung, T.Y. Chen, J.H. Wang, K.W. Wang, Chem. Commun. 51, 6605–6608 (2015)CrossRefGoogle Scholar
  81. 81.
    Y.T. Liang, C.W. Liu, H.S. Chen, T.J. Lin, C.Y. Yang, T.L. Chen, C.H. Lin, M.C. Tu, K.W. Wang, RSC Adv. 5, 39205–39208 (2015)CrossRefGoogle Scholar
  82. 82.
    G.-Y. Zhao, C.-L. Xu, D.-J. Guo, H. Li, H.-L. Li, J. Power Sources 162(1), 492–496 (2006)CrossRefGoogle Scholar
  83. 83.
    C. Koenigsmann, D.B. Semple, E. Sutter, S.E. Tobierre, S.S. Wong, ACS Appl. Mater. Interfaces 5(12), 5518–5530 (2013)CrossRefGoogle Scholar
  84. 84.
    L. Yang, M.B. Vukmirovic, D. Su, K. Sasaki, J.A. Herron, M. Mavrikakis, S. Liao, R.R. Adzic, J. Phys. Chem. C 117(4), 1748–1753 (2013)CrossRefGoogle Scholar
  85. 85.
    W.C. Choi, S.I. Woo, J. Power Sources 124, 420–425 (2003)CrossRefGoogle Scholar
  86. 86.
    K. Lin, Y. Lu, S. Du, X. Li, H. Dong, Int. J. Hydrog. Energy 41(18), 7622–7630 (2016)CrossRefGoogle Scholar
  87. 87.
    H.T. Ng, J. Li, M.K. Smith, P. Nguyen, A. Cassell, J. Han, M. Meyyappan, Science 300, 1249–1249 (2003)CrossRefGoogle Scholar
  88. 88.
    Z. Fan, X. Huang, C. Tan, H. Zhang, Chem. Sci. 6, 95–111 (2015)CrossRefGoogle Scholar
  89. 89.
    W. Wang, Y. Zhao, Y. Ding, Nanoscale 7, 11934–11939 (2015)CrossRefGoogle Scholar
  90. 90.
    Y. Song, M.A. Hickner, S.R. Challa, R.M. Dorin, R.M. Garcia, H. Wang, Y.-B. Jiang, P. Li, Y. Qiu, F. van Swol, C.J. Medforth, J.E. Miller, T. Nwoga, K. Kawahara, W. Li, J.A. Shelnutt, Nano Lett. 9, 1534–1539 (2009)CrossRefGoogle Scholar
  91. 91.
    Y. Song, R.M. Dorin, R.M. Garcia, Y.-B. Jiang, H. Wang, P. Li, Y. Qiu, F. van Swol, J.E. Miller, J.A. Shelnutt, JACS 130, 12602–12603 (2008)CrossRefGoogle Scholar
  92. 92.
    S. Guo, E. Wang, Nano Today 6, 240–264 (2011)CrossRefGoogle Scholar
  93. 93.
    A.A. Ensafi, M. Jafari-Asl, B. Rezaei, Electrochim. Acta 130, 397–405 (2014)CrossRefGoogle Scholar
  94. 94.
    J.N. Tiwari, F.-M. Pan, K.-L. Lin, New J. Chem. 33, 1482–1485 (2009)CrossRefGoogle Scholar
  95. 95.
    S.H. Sun, D.Q. Yang, D. Villers, G.X. Zhang, E. Sacher, J.P. Dodelet, Adv. Mater. 20, 571–574 (2008)CrossRefGoogle Scholar
  96. 96.
    X. Teng, X. Liang, S. Maksimuk, H. Yang, Small 2, 249–253 (2006)CrossRefGoogle Scholar
  97. 97.
    L. Wang, Y. Yamauchi, Chem. Mater. 21, 3562–3569 (2009)CrossRefGoogle Scholar
  98. 98.
    J. Fang, X. Ma, H. Cai, X. Song, B. Ding, Nanotechnology 17, 5841–5845 (2006)CrossRefGoogle Scholar
  99. 99.
    A. Morozan, B. Jousselme, S. Palacin, Energy Environ. Sci. 4, 1238–1254 (2011)CrossRefGoogle Scholar
  100. 100.
    G. Fu, K. Wu, J. Lin, Y. Tang, Y. Chen, Y. Zhou, T. Lu, J. Phys. Chem. C 117(19), 9826–9834 (2013)CrossRefGoogle Scholar
  101. 101.
    M.-S. Hyun, S.-K. Kim, B. Lee, D. Peck, Y. Shul, D. Jung, Catal. Today 132(1–4), 138–145 (2008)CrossRefGoogle Scholar
  102. 102.
    Y.H. Lee, G. Lee, J.H. Shim, S. Hwang, J. Kwak, K. Lee, H. Song, J.T. Park, Chem. Mater. 18(18), 4209–4211 (2006)CrossRefGoogle Scholar
  103. 103.
    Y.-J. Wang, N. Zhao, B. Fang, H. Li, X.T. Bi, H. Wang, Chem. Rev. 115, 3433–3467 (2015)CrossRefGoogle Scholar
  104. 104.
    Y. Yan, F. Zhan, J. Du, Y. Jiang, C. Jin, M. Fu, H. Zhang, D. Yang, Nanoscale 7, 301–307 (2015)CrossRefGoogle Scholar
  105. 105.
    J.W. Hong, S.K. Kang, B.-S. Choi, D. Kim, S.B. Lee, S.W. Han, ACS Nano 6(3), 2410–2419 (2012)CrossRefGoogle Scholar
  106. 106.
    X. Yang, L.T. Roling, M. Vara, A.O. Elnabawy, M. Zhao, Z.D. Hood, S. Bao, M. Mavrikakis, Y. Xia, Nano Lett. 16, 6644–6649 (2016)CrossRefGoogle Scholar
  107. 107.
    K. Kodama, R. Jinnouchi, N. Takahashi, H. Murata, Y. Morimoto, J. Am. Chem. Soc. 138(12), 4194–4200 (2016)CrossRefGoogle Scholar
  108. 108.
    M. Oezaslan, F. Hasché, P. Strasser, The. J. Phys. Chem. Lett. 4(19), 3273–3291 (2013)CrossRefGoogle Scholar
  109. 109.
    B. Hammer, J.K. Nørskov, Adv. Catal. 45, 71–129 (2000)Google Scholar
  110. 110.
    F. Calle-Vallejo, M.T.M. Koper, A.S. Bandarenka, Chem. Soc. Rev. 42(12), 5210–5230 (2013)CrossRefGoogle Scholar
  111. 111.
    J.L. Zhang, M.B. Vukmirovic, Y. Xu, M. Mavrikakis, R.R. Adzic, Angew. Chem. Int. Ed. 44(14), 2132–2135 (2005)CrossRefGoogle Scholar
  112. 112.
    Y. Iijima, T. Kondo, Y. Takahashi, Y. Bando, N. Todoroki, T. Wadayama, J. Electrochem. Soc. 160(8), F898–F904 (2013)CrossRefGoogle Scholar
  113. 113.
    M. Shao, A. Peles, K. Shoemaker, M. Gummalla, P.N. Njoki, J. Luo, C.-J. Zhong, J. Phys. Chem. Lett. 2, 67–72 (2011)CrossRefGoogle Scholar
  114. 114.
    B. Lim, X. Lu, M. Jiang, P.H.C. Camargo, E.C. Cho, E.P. Lee, Y. Xia, Nano Lett. 8(11), 4043–4047 (2008)CrossRefGoogle Scholar
  115. 115.
    G. Zhang, Z.-G. Shao, W. Lu, G. Li, F. Liu, B. Yi, Electrochem. Commun. 22, 145–148 (2012)CrossRefGoogle Scholar
  116. 116.
    H.I. Karan, K. Sasaki, K. Kuttiyiel, C.A. Farberow, M. Mavrikakis, R.R. Adzic, ACS Catal. 2(5), 817–824 (2012)CrossRefGoogle Scholar
  117. 117.
    K. Sasaki, H. Naohara, Y. Cai, Y.M. Choi, P. Liu, M.B. Vukmirovic, J.X. Wang, R.R. Adzic, Angew. Chem. Int. Ed. 49(46), 8602–8607 (2010)CrossRefGoogle Scholar
  118. 118.
    M. Watanabe, H. Sei, P. Stonehart, J. Electroanal. Chem. 261, 375–387 (1989)CrossRefGoogle Scholar
  119. 119.
    H. Yang, S. Kumar, S. Zou, J. Electroanal. Chem. 688, 180–188 (2013)CrossRefGoogle Scholar
  120. 120.
    R.W. Lindstrom, Y.E. Seidel, Z. Jusys, M. Gustavsson, B. Wickman, B. Kasemo, R.J. Behm, J. Electroanal. Chem. 644, 90–192 (2010)CrossRefGoogle Scholar
  121. 121.
    K. Tammeveski, M. Arulepp, T. Tenno, C. Ferrater, J. Claret, Electrochem. Acta 42, 2961–2967 (1997)CrossRefGoogle Scholar
  122. 122.
    J. Speder, L. Altmann, M. Baumer, J.J.K. Kirkensgaard, K. Mortensen, M. Arenz, RSC Adv. 4, 14971–14978 (2014)CrossRefGoogle Scholar
  123. 123.
    M. Nesselberger, S. Ashton, J.C. Meier, I. Katsounaros, K.J.J. Mayrhofer, M. Arenz, J. Am. Chem. Soc. 133(43), 17428–17433 (2011)CrossRefGoogle Scholar
  124. 124.
    M. Nesselberger, M. Roefzaad, R.F. Hamou, P.U. Biedermann, F.F. Schweinberger, S. Kunz, K. Schloegl, G.K.H. Wiberg, S. Ashton, U. Heiz, K.J.J. Mayrhofer, M. Arenz, Nat. Mater. 12(10), 919–924 (2013)CrossRefGoogle Scholar
  125. 125.
    S. Sharma, B.G. Pollet, J. Power Sources 208, 96–119 (2012)CrossRefGoogle Scholar
  126. 126.
    N.S. Veizaga, V.I. Rodriguez, S.R. de Migue, J. Electrochem. Soc. 164(2), F22–F31 (2017)CrossRefGoogle Scholar
  127. 127.
    S. Sharma, M.N. Groves, J. Fennell, N. Soin, S.L. Horsewel, C. Malardier-Jugroot, Chem. Mater. 26(21), 6142–6151 (2014)CrossRefGoogle Scholar
  128. 128.
    Q. Xue, Z.Y. Yang, Int. J. Hydrog. Energy 41(15), 6310–6315 (2016)CrossRefGoogle Scholar
  129. 129.
    J.S. Lee, K.I. Han, S.O. Park, H.N. Kim, H. Kim, Electrochim. Acta 50, 807–810 (2004)CrossRefGoogle Scholar
  130. 130.
    A.L. Dicks, J. Power Sources 156, 128–141 (2006)CrossRefGoogle Scholar
  131. 131.
    E.A. Ticianelli, C.R. Derouin, S. Srinivasan, J. Electroanal. Chem. 251, 275–295 (1998)CrossRefGoogle Scholar
  132. 132.
  133. 133.
    R.G. Cawthorn, S. Afr. J. Sci. 95, 481–489 (1999)Google Scholar
  134. 134.
    C. Hagelüken, Platin. Met. Rev. 56(1), 29–35 (2012)CrossRefGoogle Scholar
  135. 135.
    P. Yong, N.A. Rowson, J.P.G. Farr, I.R. Harris, L.E. Macaskie, Environ. Technol. 24, 289–297 (2003)CrossRefGoogle Scholar
  136. 136.
    A.N. Mabbett, D. Sanyahumbi, P. Yong, L.E. Macaskie, Environ. Sci. Technol. 40, 1015–1021 (2006)CrossRefGoogle Scholar
  137. 137.
    P. Yong, I.P. Mikheenko, K. Deplanche, M.D. Redwood, L.E. Macaskie, Biotechnol. Lett. 32, 1821–1828 (2010)CrossRefGoogle Scholar
  138. 138.
    S. Dimitriadis, N. Nomikou, A.P. McHale, Biotechnol. Lett. 29, 545–551 (2007)CrossRefGoogle Scholar
  139. 139.
    P. Yong, M. Paterson-Beedle, I.P. Mikheenko, L.E. Macaskie, Biotechnol. Lett. 29, 539–544 (2007)CrossRefGoogle Scholar
  140. 140.
    R.E. Priestley, A. Mansfield, J. Bye, K. Deplanche, A.B. Jorge, D. Brett, L.E. Macaskie, S. Sharma, RSC Adv. 5(102), 84093–84103 (2015)CrossRefGoogle Scholar
  141. 141.
    A. Kongkanand, N.P. Subramanian, Y. Yu, Z. Liu, H. Igarashi, D.A. Muller, ACS Catal. 6, 1578–1583 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical EngineeringUniversity of BirminghamBirminghamUK

Personalised recommendations