Noble Metal Electrocatalysts for Anode and Cathode in Polymer Electrolyte Fuel Cells

Chapter

Abstract

The chapter begins with a brief introduction of the importance and role of electrocatalysts in fuel cells. The following sections discuss the current state-of-the-art for noble metal electrocatalysts in polymer electrolyte fuel cells (PEFCs) along with an examination of recent developments in various noble metal (Pt, Pd, Au, Ag, Ir, Ru) electrocatalysts used in anode and cathode of a PEFC. Various 0D, 1D, 2D, and 3D nanostructured morphologies of electrocatalysts are scrutinized. Different factors responsible for influencing and manipulating the electrocatalytic response and the stability of electrocatalysts are also discussed. The need and scope for recycling of precious metal electrocatalysts are examined and finally expected future trends are deliberated.

References

  1. 1.
    J.-J. Hwang, Renew. Sust. Energ. Rev. 19, 220–229 (2013)Google Scholar
  2. 2.
    J. Stacy, Y.N. Regmi, B. Leonard, M. Fan, Renew. Sust. Energ. Rev. 69, 401–414 (2017)Google Scholar
  3. 3.
    G.A. Florida's, P. Christodoulides, Environ. Int. 35(2), 390–401 (2009)Google Scholar
  4. 4.
    M. Irani, M. Fan, H. Ismail, A. Tewari, B. Dutcher, A.G. Russell, Nano Energy 11, 235–246 (2015)Google Scholar
  5. 5.
    Y. Kong, G. Jiang, M. Fan, X. Shen, S. Cui, A.G. Russell, Chem. Commun. 50(81), 12158–12161 (2014)Google Scholar
  6. 6.
    S. Cui, W. Cheng, X. Shen, M. Fan, A. Russell, Z. Wu, X. Yi, Energy Environ. Sci. 4(6), 2070–2074 (2011)Google Scholar
  7. 7.
    M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Chem. Rev. 116, 3594–3657 (2016)Google Scholar
  8. 8.
    M. Matsunaga, T. Fukushima, K. Ojima, World Electric Vehicle Journal 3, 2032–6653 (2009)Google Scholar
  9. 9.
    S. Aso, M. Kizaki, Y. Nonobe, Development of fuel cell hybrid vehicles in Toyota, in Proceedings of the Power Conversion Conference, Nagoya, Apr 2007.  https://doi.org/10.1109/PCCON.2007.37317
  10. 10.
    D. Wenger, W. Polifke, E. Schmidt-Ihn, T. Abdel-Baset, S. Maus, Int. J. Hydrog. Energy 34, 6265–6270 (2009)Google Scholar
  11. 11.
  12. 12.
    V.P. McConnell, Fuel Cells Bull. 1, 12–15 (2007)Google Scholar
  13. 13.
    J.R. Healey, Fuel cell cars, in Earth 3.0, Scientific American (Sept 2008)Google Scholar
  14. 14.
    O.T. Holton, J.W. Stevenson, Platin. Met. Rev. 57(4), 259–271 (2013)Google Scholar
  15. 15.
    Fuel cell technologies office multi-year research, development, and demonstration plan. https://energy.gov/sites/prod/files/2014/12/f19/fcto_myrdd_fuel_cells.pdf
  16. 16.
    M. Chokai, T. Daidou, Y. Nabae, ECS Trans. 64(3), 261–270 (2014)Google Scholar
  17. 17.
    G. Wu, K.L. More, C.M. Johnston, P. Zelenay, Science 332(6028), 443–447 (2011)Google Scholar
  18. 18.
    C.H. Choi, H.-K. Lim, M.W. Chung, J.C. Park, H. Shin, H. Kim, S.I. Woo, J. Am. Chem. Soc. 136(25), 9070–9077 (2014)Google Scholar
  19. 19.
    M.P. Rodgers, L.J. Bonville, H.R. Kunz, D.K. Slattery, J.M. Fenton, Chem. Rev. 112(11), 6075–6103 (2012)Google Scholar
  20. 20.
    D. Cao, G.Q. Lu, A. Wieckowski, S.A. Wasileski, M. Neurock, J. Phys. Chem. B 109(23), 11622–11633 (2005)Google Scholar
  21. 21.
    S. Sriramulu, T.D. Jarvi, E.M. Stuve, J. Electroanal. Chem. 467, 132–142 (1999)Google Scholar
  22. 22.
    C. Song, J. Zhang, Electrocatalytic oxygen reduction reaction, in PEM Fuel Cell Electrocatalysts and Catalyst Layers, (Springer, London, 2008), pp. 89–134Google Scholar
  23. 23.
    R.F. Morais, A.A. Franco, P. Sautet, D. Loffred, Phys. Chem. Chem. Phys. 17, 11392–11400 (2015)Google Scholar
  24. 24.
    L. Zhang, Z. Xia, J. Phys. Chem. C115(22), 11170–11176 (2011)Google Scholar
  25. 25.
    D.-H. Lim, J. Wilcox, J. Phys. Chem. C 116(5), 3653–3660 (2012)Google Scholar
  26. 26.
    E. Antolini, Appl. Catal. B Environ. 181, 298–313 (2016)Google Scholar
  27. 27.
    J. Zhang, Q. Kuang, Y. Jiang, Z. Xie, Nano Today 11, 661–667 (2016)Google Scholar
  28. 28.
    O. Deutschmann, H. Knözinger, K. Kochloefl, T. Turek, Heterogeneous catalysis and solid catalysts, in Ullmann’s Encyclopedia of Industrial Chemistry (2009).  https://doi.org/10.1002/14356007.a05_313.pub2
  29. 29.
    J. Cheng, P. Hu, J. Am. Chem. Soc. 130(33), 10868–10869 (2008)Google Scholar
  30. 30.
    T. Bligaard, J.K. Nørskov, S. Dahl, J. Matthiesen, C.H. Christensen, J. Sehested, J. Catal. 224, 206–217 (2004)Google Scholar
  31. 31.
    P. Sabatier, Hydrogénations et deshydrogénations par catalyze. Ber. der Dtsch. Chem. Ges. 44(3), 1984–2001 (1911)Google Scholar
  32. 32.
    A.R. Morris, M.D. Skoglund, J.H. Holles, Appl. Catal. A Gen. 489, 98–110 (2015)Google Scholar
  33. 33.
    K.A. Kuttiyiel, K. Sasaki, Y.M. Choi, D. Su, P. Liu, R.R. Adzic, Energy Environ. Sci. 5(1), 5297–5304 (2012)Google Scholar
  34. 34.
    K. Zhou, Y. Li, Angew. Chem. Int. Ed. 51(3), 602–613 (2012)Google Scholar
  35. 35.
    J.X. Wang, H. Inada, L. Wu, Y. Zhu, Y. Choi, P. Liu, W.P. Zhou, R.R. Adzic, J. Am. Chem. Soc. 131(47), 17298–17302 (2009)Google Scholar
  36. 36.
    J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, The. J. Phys. Chem. B 108(46), 17886–17892 (2004)Google Scholar
  37. 37.
    G. Centi, S. Perathoner, Eur. J. Inorg. Chem. 2009, 3851–3878 (2009)Google Scholar
  38. 38.
    A. Chen, P.F. Holt-Hindle, Chem. Rev. 110, 3767–3804 (2010)Google Scholar
  39. 39.
    Y. Qiao, C.M. Li, J. Mater. Chem. 21, 4027–4036 (2011)Google Scholar
  40. 40.
    L. Bu, N. Zhang, S. Guo, X. Zhang, J. Li, J. Yao, T. Wu, G. Lu, J.-Y. Ma, D. Su, X. Huang, Science 354, 1410–1414 (2016)Google Scholar
  41. 41.
    C.W.B. Bezerra, L. Zhang, H. Liu, K. Lee, A.L.B. Marques, E.P. Marques, H. Wang, J. Zhang, J. Power Sources 173, 891–908 (2007)Google Scholar
  42. 42.
    S. Garbarino, A. Pereira, C. Hamel, É. Irissou, M. Chaker, D. Guay, J. Phys. Chem. C 114, 2980–2988 (2010)Google Scholar
  43. 43.
    Y. Liu, L. Zhang, B.G. Willis, W.E. Mustain, ACS Catal. 5(3), 1560–1567 (2015)Google Scholar
  44. 44.
    L.R. Merte, F. Behafarid, D.J. Miller, D. Friebel, S. Cho, F. Mbuga, D. Sokaras, R. Alonso-Mori, D. Weng T-C Nordlund, A. Nilsson, B.R. Cuenya, ACS Catal. 2(11), 2371–2376 (2012)Google Scholar
  45. 45.
    K. Yamamoto, T. Imaoka, W.-J. Chun, O. Enoki, H. Katoh, M. Takenaga, A. Sonoi, Nat. Chem. 1(5), 397–402 (2009)Google Scholar
  46. 46.
    N.M. Marković, T.J. Schmidt, V. Stamenković, P.N. Ross, Fuel Cells 1(2), 105–116 (2001)Google Scholar
  47. 47.
    M.D. Maciá, J.M. Campiña, E. Herrero, J.M. Feliu, J. Electroanal. Chem. 564(0), 141–150 (2004)Google Scholar
  48. 48.
    A. Kuzume, E. Herrero, J.M. Feliu, J. Electroanal. Chem. 599(2), 333–343 (2007)Google Scholar
  49. 49.
    A.M. Gómez-Marín, R. Rizo, J.M. Feliu, Beilstein J. Nanotechnol. 4, 956–967 (2013)Google Scholar
  50. 50.
    A.M. Gómez-Marín, J.M. Feliu, Catal. Today 244(0), 172–176 (2015)Google Scholar
  51. 51.
    N. Hoshi, M. Nakamura, A. Hitotsuyanagi, Electrochim. Acta 112, 899–904 (2013)Google Scholar
  52. 52.
    B. Wu, N. Zheng, Nano Today 8(2), 168–197 (2013)Google Scholar
  53. 53.
    B.Y. Xia, H.B. Wu, X. Wang, X.W. Lou, Angew. Chem. 125(47), 12563–12566 (2013)Google Scholar
  54. 54.
    D. Li, C. Wang, D.S. Strmcnik, D.V. Tripkovic, X. Sun, Y. Kang, M. Chi, J.D. Snyder, D. Van der Vliet, Y. Tsai, V.R. Stamenkovic, S. Sun, N.M. Markovic, Energy Environ. Sci. 7(12), 4061–4069 (2014)Google Scholar
  55. 55.
    M. Shao, A. Peles, K. Shoemaker, Nano Lett. 11, 3714–3719 (2011)Google Scholar
  56. 56.
    S. Mukerjee, J. McBreen, J. Electroanal. Chem. 448, 163–171 (1998)Google Scholar
  57. 57.
    Y. Takasu, Y.N. Ohashi, X.G. Zhang, Y. Murakami, H. Minagawa, S. Sato, K. Yahikozawa, Electrochim. Acta 41, 2595–2600 (1996)Google Scholar
  58. 58.
    S. Park, Y. Xie, M.J. Weaver, Langmuir 18, 5792–5798 (2002)Google Scholar
  59. 59.
    K. Bergamaski, A.L.N. Pinheiro, E. Teixeira-Neto, F.C. Nart, J. Phys. Chem. B 110(39), 19271–19279 (2006)Google Scholar
  60. 60.
    B.D. McNicol, P. Attwood, R.T. Short, J. Chem. Soc. Faraday Trans. 77, 2017–2028 (1981)Google Scholar
  61. 61.
    S.J. Yoo, Y.T. Jeon, Y.H. Cho, K.S. Lee, Y.E. Sung, Electrochim. Acta 55, 7939–7944 (2010)Google Scholar
  62. 62.
    M. Shao, J. Power Sources 196(5), 2433–2444 (2011)Google Scholar
  63. 63.
    M. Shao, T. Yu, J.H. Odell, M. Jin, Y. Xia, Chem. Commun. 47(23), 6566–6568 (2011)Google Scholar
  64. 64.
    L. Ou, S. Chen, J. Phys. Chem. C 117(3), 1342–1349 (2013)Google Scholar
  65. 65.
    Z. Peng, H. Yang, Nano Today 4, 143–164 (2009)Google Scholar
  66. 66.
    L. Zhang, L.T. Roling, X. Wang, M. Vara, M. Chi, J. Liu, S. Choi, J. Park, J.A. Herron, Z. Xie, M. Mavrikakis, Y. Xia, Science 349(6246), 412–416 (2015)Google Scholar
  67. 67.
    X. Wang, L. Figueroa-Cosme, X. Yang, M. Luo, J. Liu, Z. Xie, Y. Xia, Nano Lett. 16(2), 1467–1471 (2016)Google Scholar
  68. 68.
    Y. Lu, S. Du, R. Steinberger-Wilkens, Appl. Catal. B Environ. 199, 292–314 (2016)Google Scholar
  69. 69.
    R.K. Joshi, J.J. Schneider, Chem. Soc. Rev. 41, 5285–5312 (2012)Google Scholar
  70. 70.
    C. Koenigsmann, S.S. Wong, Energy Environ. Sci. 4, 1161–1176 (2011)Google Scholar
  71. 71.
    Y. Shao, G. Yin, Y. Gao, J. Power Sources 171, 558–566 (2007)Google Scholar
  72. 72.
    K. MTM (ed.), Fuel Cell Catalysts (Wiley-Interscience, Hoboken, 2009)Google Scholar
  73. 73.
    C. Koenigsmann, W.P. Zhou, R.R. Adzic, E. Sutter, S.S. Wong, Nano Lett. 10, 2806–2811 (2010)Google Scholar
  74. 74.
    K.S. Napolskii, P.J. Barczuk, S.Y. Vassiliev, A.G. Veresov, G.A. Tsirlina, P.J. Kulesza, Electrochim. Acta 52, 7910–7979 (2007)Google Scholar
  75. 75.
    S. Sun, F. Jaouen, J.-P. Dodelet, Adv. Mater. 20, 3900–3904 (2008)Google Scholar
  76. 76.
    L. Xiao, L. Zhuang, Y. Liu, J. Lu, H.D. Abruña, J. Am. Chem. Soc. 131(2), 602–608 (2009)Google Scholar
  77. 77.
    S. Choi, H. Jeong, K.-H. Choi, J.Y. Song, J. Kim, ACS Appl. Mater. Interfaces 6(4), 3002–3007 (2014)Google Scholar
  78. 78.
    T.H. Yeh, C.W. Liu, H.S. Chen, K.W. Wang, Electrochem. Commun. 31, 125–128 (2013)Google Scholar
  79. 79.
    Y.C. Tseng, H.S. Chen, C.W. Liu, T.H. Yeh, K.W. Wang, J. Mater. Chem. A 2, 4270–4275 (2014)Google Scholar
  80. 80.
    Y.T. Liang, S.P. Lin, C.W. Liu, S.R. Chung, T.Y. Chen, J.H. Wang, K.W. Wang, Chem. Commun. 51, 6605–6608 (2015)Google Scholar
  81. 81.
    Y.T. Liang, C.W. Liu, H.S. Chen, T.J. Lin, C.Y. Yang, T.L. Chen, C.H. Lin, M.C. Tu, K.W. Wang, RSC Adv. 5, 39205–39208 (2015)Google Scholar
  82. 82.
    G.-Y. Zhao, C.-L. Xu, D.-J. Guo, H. Li, H.-L. Li, J. Power Sources 162(1), 492–496 (2006)Google Scholar
  83. 83.
    C. Koenigsmann, D.B. Semple, E. Sutter, S.E. Tobierre, S.S. Wong, ACS Appl. Mater. Interfaces 5(12), 5518–5530 (2013)Google Scholar
  84. 84.
    L. Yang, M.B. Vukmirovic, D. Su, K. Sasaki, J.A. Herron, M. Mavrikakis, S. Liao, R.R. Adzic, J. Phys. Chem. C 117(4), 1748–1753 (2013)Google Scholar
  85. 85.
    W.C. Choi, S.I. Woo, J. Power Sources 124, 420–425 (2003)Google Scholar
  86. 86.
    K. Lin, Y. Lu, S. Du, X. Li, H. Dong, Int. J. Hydrog. Energy 41(18), 7622–7630 (2016)Google Scholar
  87. 87.
    H.T. Ng, J. Li, M.K. Smith, P. Nguyen, A. Cassell, J. Han, M. Meyyappan, Science 300, 1249–1249 (2003)Google Scholar
  88. 88.
    Z. Fan, X. Huang, C. Tan, H. Zhang, Chem. Sci. 6, 95–111 (2015)Google Scholar
  89. 89.
    W. Wang, Y. Zhao, Y. Ding, Nanoscale 7, 11934–11939 (2015)Google Scholar
  90. 90.
    Y. Song, M.A. Hickner, S.R. Challa, R.M. Dorin, R.M. Garcia, H. Wang, Y.-B. Jiang, P. Li, Y. Qiu, F. van Swol, C.J. Medforth, J.E. Miller, T. Nwoga, K. Kawahara, W. Li, J.A. Shelnutt, Nano Lett. 9, 1534–1539 (2009)Google Scholar
  91. 91.
    Y. Song, R.M. Dorin, R.M. Garcia, Y.-B. Jiang, H. Wang, P. Li, Y. Qiu, F. van Swol, J.E. Miller, J.A. Shelnutt, JACS 130, 12602–12603 (2008)Google Scholar
  92. 92.
    S. Guo, E. Wang, Nano Today 6, 240–264 (2011)Google Scholar
  93. 93.
    A.A. Ensafi, M. Jafari-Asl, B. Rezaei, Electrochim. Acta 130, 397–405 (2014)Google Scholar
  94. 94.
    J.N. Tiwari, F.-M. Pan, K.-L. Lin, New J. Chem. 33, 1482–1485 (2009)Google Scholar
  95. 95.
    S.H. Sun, D.Q. Yang, D. Villers, G.X. Zhang, E. Sacher, J.P. Dodelet, Adv. Mater. 20, 571–574 (2008)Google Scholar
  96. 96.
    X. Teng, X. Liang, S. Maksimuk, H. Yang, Small 2, 249–253 (2006)Google Scholar
  97. 97.
    L. Wang, Y. Yamauchi, Chem. Mater. 21, 3562–3569 (2009)Google Scholar
  98. 98.
    J. Fang, X. Ma, H. Cai, X. Song, B. Ding, Nanotechnology 17, 5841–5845 (2006)Google Scholar
  99. 99.
    A. Morozan, B. Jousselme, S. Palacin, Energy Environ. Sci. 4, 1238–1254 (2011)Google Scholar
  100. 100.
    G. Fu, K. Wu, J. Lin, Y. Tang, Y. Chen, Y. Zhou, T. Lu, J. Phys. Chem. C 117(19), 9826–9834 (2013)Google Scholar
  101. 101.
    M.-S. Hyun, S.-K. Kim, B. Lee, D. Peck, Y. Shul, D. Jung, Catal. Today 132(1–4), 138–145 (2008)Google Scholar
  102. 102.
    Y.H. Lee, G. Lee, J.H. Shim, S. Hwang, J. Kwak, K. Lee, H. Song, J.T. Park, Chem. Mater. 18(18), 4209–4211 (2006)Google Scholar
  103. 103.
    Y.-J. Wang, N. Zhao, B. Fang, H. Li, X.T. Bi, H. Wang, Chem. Rev. 115, 3433–3467 (2015)Google Scholar
  104. 104.
    Y. Yan, F. Zhan, J. Du, Y. Jiang, C. Jin, M. Fu, H. Zhang, D. Yang, Nanoscale 7, 301–307 (2015)Google Scholar
  105. 105.
    J.W. Hong, S.K. Kang, B.-S. Choi, D. Kim, S.B. Lee, S.W. Han, ACS Nano 6(3), 2410–2419 (2012)Google Scholar
  106. 106.
    X. Yang, L.T. Roling, M. Vara, A.O. Elnabawy, M. Zhao, Z.D. Hood, S. Bao, M. Mavrikakis, Y. Xia, Nano Lett. 16, 6644–6649 (2016)Google Scholar
  107. 107.
    K. Kodama, R. Jinnouchi, N. Takahashi, H. Murata, Y. Morimoto, J. Am. Chem. Soc. 138(12), 4194–4200 (2016)Google Scholar
  108. 108.
    M. Oezaslan, F. Hasché, P. Strasser, The. J. Phys. Chem. Lett. 4(19), 3273–3291 (2013)Google Scholar
  109. 109.
    B. Hammer, J.K. Nørskov, Adv. Catal. 45, 71–129 (2000)Google Scholar
  110. 110.
    F. Calle-Vallejo, M.T.M. Koper, A.S. Bandarenka, Chem. Soc. Rev. 42(12), 5210–5230 (2013)Google Scholar
  111. 111.
    J.L. Zhang, M.B. Vukmirovic, Y. Xu, M. Mavrikakis, R.R. Adzic, Angew. Chem. Int. Ed. 44(14), 2132–2135 (2005)Google Scholar
  112. 112.
    Y. Iijima, T. Kondo, Y. Takahashi, Y. Bando, N. Todoroki, T. Wadayama, J. Electrochem. Soc. 160(8), F898–F904 (2013)Google Scholar
  113. 113.
    M. Shao, A. Peles, K. Shoemaker, M. Gummalla, P.N. Njoki, J. Luo, C.-J. Zhong, J. Phys. Chem. Lett. 2, 67–72 (2011)Google Scholar
  114. 114.
    B. Lim, X. Lu, M. Jiang, P.H.C. Camargo, E.C. Cho, E.P. Lee, Y. Xia, Nano Lett. 8(11), 4043–4047 (2008)Google Scholar
  115. 115.
    G. Zhang, Z.-G. Shao, W. Lu, G. Li, F. Liu, B. Yi, Electrochem. Commun. 22, 145–148 (2012)Google Scholar
  116. 116.
    H.I. Karan, K. Sasaki, K. Kuttiyiel, C.A. Farberow, M. Mavrikakis, R.R. Adzic, ACS Catal. 2(5), 817–824 (2012)Google Scholar
  117. 117.
    K. Sasaki, H. Naohara, Y. Cai, Y.M. Choi, P. Liu, M.B. Vukmirovic, J.X. Wang, R.R. Adzic, Angew. Chem. Int. Ed. 49(46), 8602–8607 (2010)Google Scholar
  118. 118.
    M. Watanabe, H. Sei, P. Stonehart, J. Electroanal. Chem. 261, 375–387 (1989)Google Scholar
  119. 119.
    H. Yang, S. Kumar, S. Zou, J. Electroanal. Chem. 688, 180–188 (2013)Google Scholar
  120. 120.
    R.W. Lindstrom, Y.E. Seidel, Z. Jusys, M. Gustavsson, B. Wickman, B. Kasemo, R.J. Behm, J. Electroanal. Chem. 644, 90–192 (2010)Google Scholar
  121. 121.
    K. Tammeveski, M. Arulepp, T. Tenno, C. Ferrater, J. Claret, Electrochem. Acta 42, 2961–2967 (1997)Google Scholar
  122. 122.
    J. Speder, L. Altmann, M. Baumer, J.J.K. Kirkensgaard, K. Mortensen, M. Arenz, RSC Adv. 4, 14971–14978 (2014)Google Scholar
  123. 123.
    M. Nesselberger, S. Ashton, J.C. Meier, I. Katsounaros, K.J.J. Mayrhofer, M. Arenz, J. Am. Chem. Soc. 133(43), 17428–17433 (2011)Google Scholar
  124. 124.
    M. Nesselberger, M. Roefzaad, R.F. Hamou, P.U. Biedermann, F.F. Schweinberger, S. Kunz, K. Schloegl, G.K.H. Wiberg, S. Ashton, U. Heiz, K.J.J. Mayrhofer, M. Arenz, Nat. Mater. 12(10), 919–924 (2013)Google Scholar
  125. 125.
    S. Sharma, B.G. Pollet, J. Power Sources 208, 96–119 (2012)Google Scholar
  126. 126.
    N.S. Veizaga, V.I. Rodriguez, S.R. de Migue, J. Electrochem. Soc. 164(2), F22–F31 (2017)Google Scholar
  127. 127.
    S. Sharma, M.N. Groves, J. Fennell, N. Soin, S.L. Horsewel, C. Malardier-Jugroot, Chem. Mater. 26(21), 6142–6151 (2014)Google Scholar
  128. 128.
    Q. Xue, Z.Y. Yang, Int. J. Hydrog. Energy 41(15), 6310–6315 (2016)Google Scholar
  129. 129.
    J.S. Lee, K.I. Han, S.O. Park, H.N. Kim, H. Kim, Electrochim. Acta 50, 807–810 (2004)Google Scholar
  130. 130.
    A.L. Dicks, J. Power Sources 156, 128–141 (2006)Google Scholar
  131. 131.
    E.A. Ticianelli, C.R. Derouin, S. Srinivasan, J. Electroanal. Chem. 251, 275–295 (1998)Google Scholar
  132. 132.
  133. 133.
    R.G. Cawthorn, S. Afr. J. Sci. 95, 481–489 (1999)Google Scholar
  134. 134.
    C. Hagelüken, Platin. Met. Rev. 56(1), 29–35 (2012)Google Scholar
  135. 135.
    P. Yong, N.A. Rowson, J.P.G. Farr, I.R. Harris, L.E. Macaskie, Environ. Technol. 24, 289–297 (2003)Google Scholar
  136. 136.
    A.N. Mabbett, D. Sanyahumbi, P. Yong, L.E. Macaskie, Environ. Sci. Technol. 40, 1015–1021 (2006)Google Scholar
  137. 137.
    P. Yong, I.P. Mikheenko, K. Deplanche, M.D. Redwood, L.E. Macaskie, Biotechnol. Lett. 32, 1821–1828 (2010)Google Scholar
  138. 138.
    S. Dimitriadis, N. Nomikou, A.P. McHale, Biotechnol. Lett. 29, 545–551 (2007)Google Scholar
  139. 139.
    P. Yong, M. Paterson-Beedle, I.P. Mikheenko, L.E. Macaskie, Biotechnol. Lett. 29, 539–544 (2007)Google Scholar
  140. 140.
    R.E. Priestley, A. Mansfield, J. Bye, K. Deplanche, A.B. Jorge, D. Brett, L.E. Macaskie, S. Sharma, RSC Adv. 5(102), 84093–84103 (2015)Google Scholar
  141. 141.
    A. Kongkanand, N.P. Subramanian, Y. Yu, Z. Liu, H. Igarashi, D.A. Muller, ACS Catal. 6, 1578–1583 (2016)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical EngineeringUniversity of BirminghamBirminghamUK

Personalised recommendations