Non-carbon Support Materials Used in Low-Temperature Fuel Cells

  • Xuecheng Cao
  • Fan Li
  • Ruizhi Yang


To improve electrochemical performance of the fuel cell devices, various nanoscaled materials were produced using different methods such as colloidal chemistry, physical deposition, pyrolysis, and solid-state chemistry. Series of materials such as Pt-catalytic support materials are described and include doped metal oxides, carbides, nitrides, borides, mesoporous silica, metal, and conducting polymer-based support materials for Pt class of electrocatalysts. In this chapter, we summarized the recent developments in the advanced synthesis of electrodes for low-temperature fuel cells, cathode, and anode catalyst for proton exchange membrane fuel cells (PEMFCs). The structures of these materials were highly diversified, including core-shell, hybrid catalytic materials, and skinned-shell structures. We also discuss tolerance to acidic media and CO of catalysts supported by metal and mixed metal oxide nanocatalysts with mesoporous, hollow, or multilayered structures. Their representative catalytic applications in the fuel cell devices particularly in oxygen reduction reaction (ORR), hydrogen oxidation reactions (HOR), and methanol oxidation reaction (MOR) are discussed. We highlighted perspectives for their challenges ahead and opportunities for their use in low-temperature fuel cells and PEMFCs. Based on the structural characterization and performance of the devices, we further listed the ideal support material characteristics to enhance the stability and durability of these carbon-based and non-carbon-based support materials for Pt and non-Pt nanocatalysts used in low-temperature fuel cells.



The authors would express thanks to Dr. Gong Hongyu and Ms. Zheng Xiangjun for their kindly help and to the National Nature Science Foundation of China (51572181, 51472009, 51172007) and Natural Science Foundation of Jiangsu Province, China (BK20151226), for their financial support.


  1. 1.
    A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366–377 (2005)CrossRefGoogle Scholar
  2. 2.
    B.C.H. Steele, A. Heinzel, Materials for fuel cell technologies. Nature 414, 345–352 (2001)CrossRefGoogle Scholar
  3. 3.
    L.M. Roen, C.H. Paik, T.D. Jarvi, Electrocatalytic corrosion of carbon support in PEMFC cathodes. Electrochem. Solid-State Lett. 7(1), A19–A22 (2004)CrossRefGoogle Scholar
  4. 4.
    P. Serp, M. Corrias, P. Kalck, Carbon nanotubes and nanofibers in catalysis. Appl. Catal. A 253(2), 337–358 (2003)CrossRefGoogle Scholar
  5. 5.
    S.D. Knights, K.M. Colbow, J. St-Pierre, D.P. Wilkinson, Aging mechanisms and a lifetime of PEFC and DMFC. J. Power Sources 127(1–2), 127–134 (2004)CrossRefGoogle Scholar
  6. 6.
    F.C. Walsh, R.G.A. Wills, The continuing development of Magnéli phase titanium sub-oxide and Ebonex® electrodes. Electrochim. Acta 55, 6342–6351 (2010)CrossRefGoogle Scholar
  7. 7.
    S. Andersson, B. Collen, U. Kuylenstierna, A. Magnéli, Phase analysis studies on the titanium-oxygen system. Acta Chem. Scand. 11, 1641–1652 (1957)CrossRefGoogle Scholar
  8. 8.
    M. Marezio, D.B. McWhan, P.D. Demier, J.P. Remeika, Structural aspects of the metal-insulator transitions in Ti4O7. J. Solid State Chem. 6(2), 213–221 (1973)CrossRefGoogle Scholar
  9. 9.
    J.E. Graves, D. Pletcher, R.L. Clarke, F.C. Walsh, The electrochemistry of Magnéli phase titanium oxide ceramic electrodes Part I. The deposition and properties of the metal coating. J. Appl. Electrochem. 21(10), 848–857 (1991)CrossRefGoogle Scholar
  10. 10.
    L.M. Vracar, N.V. Krstajic, V.R. Radmilovic, M.M. Jaksic, Electrocatalysis by nanoparticles-oxygen reduction on Ebonex/Pt electrode. J. Electroanal. Chem. 587(1), 99–107 (2005)CrossRefGoogle Scholar
  11. 11.
    L. Wang, P. Lettenmeier, U. Golla-Schindler, P. Gazdzicki, N.A. Canas, T. Morawietz, R. Hiesgen, S.S. Hosseiny, A.S. Gago, K.A. Friedrich, Nanostructured Ir-supported on Ti4O7 as a cost effective anode for proton exchange membrane (PEM) electrolyzers. Phys. Chem. Chem. Phys. 18(6), 4487–4495 (2016)CrossRefGoogle Scholar
  12. 12.
    T. Ioroi, H. Senoh, S. Yamazaki, Z. Siroma, N. Fujiwara, K. Yasuda, Stability of corrosion-resistant Magnéli-phase Ti4O7-supported PEMFC catalysts at high potentials. J. Electrochem. Soc. 155(4), B321–B326 (2008)CrossRefGoogle Scholar
  13. 13.
    S.J. Tauster, S.C. Fung, R.T.K. Baker, J.A. Horsley, Strong interactions in support-metal catalysts. Science 211(4487), 1121–1125 (1981)CrossRefGoogle Scholar
  14. 14.
    E.E. Farndon, D. Pletcher, A. Saraby-Reintjes, The electrodeposition of platinum onto a conducting ceramic Ebonex. Electrochim. Acta 42(8), 1269–1279 (1997)CrossRefGoogle Scholar
  15. 15.
    E. Slavcheva, V. Nikolova, T. Petkova, E. Lefterova, I. Dragieva, T. Vitanov, E. Budevski, Electrocatalytic activity of Pt and Pt-Co deposited on Ebonex by BH reduction. Electrochim. Acta 50(27), 5444–5448 (2005)CrossRefGoogle Scholar
  16. 16.
    G.Y. Chen, S.R. Bare, T.E. Mallouk, Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells. J. Electrochem. Soc. 149(8), A1092–A1099 (2002)CrossRefGoogle Scholar
  17. 17.
    C.H. Yao, F. Li, X. Li, D.G. Xia, Fiber-like nanostructured Ti4O7 used as durable fuel cell catalyst support in oxygen reduction catalysis. J. Mater. Chem. 22(32), 16560–16565 (2012)CrossRefGoogle Scholar
  18. 18.
    P.K. Shen, C.Y. He, S.Y. Chang, X.D. Huang, Z.Q. Tian, Magnéli phase Ti8O15 nanowires as conductive carbon-free energy materials to enhance the electrochemical activity of palladium nanoparticles for direct ethanol oxidation. J. Mater. Chem. A 3, 14416–14423 (2015)CrossRefGoogle Scholar
  19. 19.
    L. Chen, A.C. Cooper, G.P. Pez, H.S. Cheng, On the mechanisms of hydrogen spillover in MoO3. J. Phys. Chem. C 112(6), 1755–1758 (2008)CrossRefGoogle Scholar
  20. 20.
    N.R. Elezovic, B.M. Babic, V.R. Radmilovic, L.M. Vracar, N.V. Krstajjc, Synthesis and characterization of MoOx-Pt/C and TiOx-Pt/C nano-catalysts for oxygen reduction. Electrochim. Acta 54(9), 2404–2409 (2009)CrossRefGoogle Scholar
  21. 21.
    Y. Wang, E.R. Fachini, G. Cruz, Y.M. Zhu, Y. Ishikawa, J.A. Colucci, C.R. Cabrera, Effect of surface composition of electrochemically deposited platinum/molybdenum oxide on methanol oxidation. J. Electrochem. Soc. 148(3), C222–C226 (2001)CrossRefGoogle Scholar
  22. 22.
    T. Ioroi, T. Akita, S. Yamazaki, Z. Siroma, N. Fujiwara, K. Yasuda, Comparative study of carbon-supported Pt/Mo-oxide and PtRu for use as Co-tolerant anode catalysts. Electrochim. Acta 52(2), 491–498 (2006)CrossRefGoogle Scholar
  23. 23.
    M. Koyano, A. Miyata, H. Hara, Anisotropic behavior of electrical conductivity and collective motion of charge density wave in quasi-two-dimensional conductor g-Mo4O11. Phys. B Condens. Matter 284-248, 1663–1664 (2000)CrossRefGoogle Scholar
  24. 24.
    T. Sato, T. Dobashi, H. Komatsu, T. Takahashi, M. Koyano, Electronic structure of η-Mo4O11 studied by high-resolution angle-resolved photoemission spectroscopy. J. Electron Spectrosc. Relat. Phenom. 144-147, 549–552 (2005)CrossRefGoogle Scholar
  25. 25.
    M.S. da Luz, A. de Campos, B.D. White, J.J. Neumeier, Electrical resistivity, high-resolution thermal expansion, and heat capacity measurements of the charge-density-wave compound gamma-Mo4O11. Phys. Rev. B 79, 233106-1–233106-4 (2009)Google Scholar
  26. 26.
    F. Yang, F. Li, Y. Wang, X. Chen, D.G. Xia, J.B. Liu, Enhanced electrocatalytic performance for methanol oxidation with a Magnéli phase molybdenum oxide/Pt-black composite. J. Mol. Catal. A Chem. 400, 7–13 (2015)CrossRefGoogle Scholar
  27. 27.
    R. Xu, F. Xu, M. Pan, M. SC, Improving sulfur tolerance of noble metal catalysts by tungsten oxide-induced effects. RSC Adv. 3, 764–773 (2013)CrossRefGoogle Scholar
  28. 28.
    F. Li, H.Y. Gong, Y. Wang, H. Zhang, Y.Z. Wang, S.N. Liu, S. Wang, C.W. Sun, Enhanced activity, durability and anti-poisoning property of Pt/W18O49 for methanol oxidation with a substoichiometric tungsten oxide W18O49 support. J. Mater. Chem. A 2, 20154–20163 (2014)CrossRefGoogle Scholar
  29. 29.
    L. YZ, Y.Y. Jiang, X.H. Gao, X.D. Wang, W. Chen, Strongly coupled Pd nano tetrahedron/tungsten oxide nanosheet hybrids with enhanced catalytic activity and stability as oxygen reduction electrocatalysts. J. Am. Chem. Soc. 136(33), 11687–11697 (2014)CrossRefGoogle Scholar
  30. 30.
    X.B. Zhu, H.M. Zhang, Y.M. Liang, Y. Zhang, B.L. Yi, A novel PTFE-reinforced multilayer self-humidifying composite membrane for PEM fuel cell. Electrochem. Solid-State Lett. 9(2), A49–A52 (2006)CrossRefGoogle Scholar
  31. 31.
    Z.G. Chen, X.P. Qiu, B. Lu, S.C. Zhang, W.T. Zhu, L.Q. Chen, Synthesis of hydrous ruthenium oxide-supported platinum catalysts for direct methanol fuel cells. Electrochem. Commun. 7(6), 593–596 (2005)CrossRefGoogle Scholar
  32. 32.
    K. Park, K. Seol, Nb-TiO2 supported Pt cathode catalyst for polymer electrolyte membrane fuel cells. Electrochem. Commun. 9(9), 2256–2260 (2007)CrossRefGoogle Scholar
  33. 33.
    O.E. Hass, S.T. Briskeby, O.E. Kongstein, M. Tsypkin, R. Tunold, B.T. Boerresen, Synthesis and characterization of RuxTi1-xO2 as a catalyst support for the polymer electrolyte fuel cell. J. New Mater. Electrochem. Syst. 11(1), 9–14 (2008)Google Scholar
  34. 34.
    A.P. Wang, X. HB, L. YH, H. JZ, X.F. Kong, B.L. Tian, H. Dong, Synthesis and characterization of ruthenium-titanium composite oxide and a platinum catalyst supported on it. Chin. J. Catal. 30(3), 179–181 (2009)CrossRefGoogle Scholar
  35. 35.
    V. Ho, C.J. Pan, J. Rick, S. WN, B.J. Hwang, Nanostructured Ti0.7Mo0.3O2 supported enhances electron transfer to Pt: high-performance catalysts for oxygen reduction reaction. J. Am. Chem. Soc. 133(30), 11716–11724 (2011)CrossRefGoogle Scholar
  36. 36.
    P. Yu, M. Pemberton, P. Plasse, Pt-Co/C cathode catalyst for improved durability in PEMFCs. J. Power Source 144(1), 11–20 (2005)CrossRefGoogle Scholar
  37. 37.
    J.H. Kim, G. Kwon, H. Lim, C. Zhu, H. You, Y.T. Kim, Effects of transition metal doping in Pt/M-TiO2 (M=V, Cr, Nb) on oxygen reduction reaction activity. J. Power Sources 320, 188–195 (2016)CrossRefGoogle Scholar
  38. 38.
    T. Saraidarov, R. Reisfeld, E. Zigansky, A. Sashchiuk, E. Lifshitz, Electrical conductivity of doped porous glasses as possible sensors for oxygen. Opt. Appl. 38(1), 109–117 (2008)Google Scholar
  39. 39.
    A.L. Santos, D. Profeti, P. Olivi, Electrooxidation of methanol on Pt microparticles dispersed on SnO2 thin films. Electrochim. Acta 50(13), 2615–2621 (2005)CrossRefGoogle Scholar
  40. 40.
    K.S. Lee, I.S. Park, Y.H. Cho, D.S. Jung, N. Jung, H.Y. Park, Y.E. Sung, Electrocatalytic activity and stability of Pt supported on Sb-doped SnO2 nanoparticles for direct alcohol fuel cells. J. Catal. 258(1), 143–152 (2008)CrossRefGoogle Scholar
  41. 41.
    H.L. Pang, X.H. Zhang, X.X. Zhong, B. Liu, X.G. Wei, Y.F. Kuang, J.H. Chen, Preparation of Ru-doped SnO2-supported Pt catalysts and their electrocatalytic properties for methanol oxidation. J. Colloid Interface Sci. 319(1), 193–198 (2008)CrossRefGoogle Scholar
  42. 42.
    Y. Liu, W.E. Mustain, High stability, high activity Pt/ITO oxygen reduction electrocatalysts. J. Am. Chem. Soc. 135(2), 530–533 (2013)CrossRefGoogle Scholar
  43. 43.
    S. Hara, M. Miyayama, Proton conductivity of super acidic sulfated zirconia. Solid State Ionics 168(1–2), 111–116 (2004)CrossRefGoogle Scholar
  44. 44.
    Y.C. Suzuki, A. Ishihara, S. Mitsushima, N. Kamiya, K. Ota, Sulfated-zirconia as a support of Pt catalyst for polymer electrolyte fuel cells. Electrochem. Solid-State Lett. 10(7), B105–B107 (2007)CrossRefGoogle Scholar
  45. 45.
    V. Jalan, D.G. Frost, U.S. Patent 4,795,684 1989Google Scholar
  46. 46.
    E.C. Weigert, S. Arisetty, S.G. Advani, A.K. Prasad, J.G. Chen, Electrochemical evaluation of tungsten monocarbide (WC) and platinum-modified WC as alternative DMFC electrocatalysts. J. New Mater. Electrochem. Syst. 11, 243–251 (2008)Google Scholar
  47. 47.
    Y. Wang, S.Q. Song, V. Maragou, P.K. Shen, P. Tsiakaras, High surface area tungsten carbide microsphere as effective Pt catalyst support for oxygen reduction reaction. Appl Catal B 89(1–2), 223–228 (2009)Google Scholar
  48. 48.
    Y. Hara, N. Minami, H. Matsumoto, H. Itagaki, New synthesis of tungsten carbide particles and synergistic effect with Pt metal as a hydrogen oxidation catalyst for fuel cell applications. Appl. Catal. A 332(2), 289–296 (2007)CrossRefGoogle Scholar
  49. 49.
    J. Lobato, H. Zamora, J. Plaza, P. Canizares, M.A. Rodrigo, Enhancement of high-temperature PEMFC stability using catalysts based on Pt supported on SiC-based materials. Appl. Catal. B Environ. 198, 516–524 (2016)CrossRefGoogle Scholar
  50. 50.
    R. Dhiman, E. Johnson, E.M. Skou, P. Morgen, S.M. Andersen, SiC nanocrystals as Pt catalyst supports for fuel cell applications. J. Mater. Chem. A 1, 6030–6036 (2013)CrossRefGoogle Scholar
  51. 51.
    B. Avasarala, T. Murray, W.Z. Li, P. Haldar, Titanium nitride nanoparticles based electrocatalysts for proton exchange membrane fuel cells. J. Mater. Chem. 19, 1803–1805 (2009)CrossRefGoogle Scholar
  52. 52.
    J.A. Perdigon-Melon, A. Auroux, C. Guimon, B. Bonnetot, Micrometric BN powders used as catalyst support: influence of the precursor on the properties of BN ceramic. J. Solid State Chem. 177(2), 609–615 (2004)CrossRefGoogle Scholar
  53. 53.
    S.B. Yin, S.C. Mu, H.F. Lv, N.C. Cheng, M. Pan, Z.Y. Fu, A highly stable catalyst for PEM fuel cell based on durable titanium diboride support and polymer stabilization. Appl Catal B 93(3–4), 233–240 (2010)CrossRefGoogle Scholar
  54. 54.
    I. Eswaramoorthi, A.K. Dalai, A comparative study on the performance of mesoporous SBA-15 supported Pd-Zn catalysts in partial oxidation and steam reforming of methanol for hydrogen production. Int. J. Hydrog. Energy 34(6), 2580–2590 (2009)CrossRefGoogle Scholar
  55. 55.
    K. Sasaki, Y. Mo, J.X. Wang, M. Balasubramanian, F. Uribe, J. Mcbreen, R.R. Adzic, Pt submonolayers on metal nanoparticles-novel Electrocatalysts for H2 oxidation and O2 reduction. Electrochem. Acta 48(25–26), 3841–3849 (2003)CrossRefGoogle Scholar
  56. 56.
    J. Zhang, Y. Mo, M.B. Vukmirovic, R. Klie, K. Sasaki, R.R. Adzic, Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd (111) and on carbon-supported Pd nanoparticles. J. Phys. Chem. B 108(30), 10955–10964 (2004)CrossRefGoogle Scholar
  57. 57.
    V. Stamenkovic, T.J. Schmidt, P.N. Ross, N.M. Markovic, Surface composition effects in electrocatalysis: kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J. Phys. Chem. B 106(46), 11970–11979 (2002)CrossRefGoogle Scholar
  58. 58.
    V.R. Stamenkovic, B.S. Mun, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J. Am. Chem. Soc. 128(27), 8813–8819 (2006)CrossRefGoogle Scholar
  59. 59.
    H. Laborde, J.M. Leger, C. Lamy, Electrocatalytic oxidation of methanol and C1 molecules on highly dispersed electrodes Part1: platinum in polyaniline. J. Appl. Electrochem. 24(3), 219–226 (1994)CrossRefGoogle Scholar
  60. 60.
    B. Rajesh, K.R. Thampi, J.M. Bonard, H.J. Mathieu, N. Xanthopoulos, B. Viswanathan, Nanostructured conducting polyaniline tubules as catalyst support for Pt particles for possible fuel cell applications. Electrochem. Solid-State Lett. 7(11), A404–A407 (2004)CrossRefGoogle Scholar
  61. 61.
    H.B. Zhao, L. Li, J. Yang, Y.M. Zhang, Nanostructured polypyrrole/carbon composite as Pt catalyst support for fuel cell applications. J. Power Sources 184(2), 375–380 (2008)CrossRefGoogle Scholar
  62. 62.
    V. Selvaraj, M. Alagar, Pt and Pt-Ru nanoparticles decorated polypyrrole/multiwalled carbon nanotubes and their catalytic activity towards methanol oxidation. Electrochem. Commun. 9(5), 1145–1153 (2007)CrossRefGoogle Scholar
  63. 63.
    H.B. Zhao, L. Li, J. Yang, Y.M. Zhang, H. Li, Synthesis and characterization of bimetallic Pt-Fe/polypyrrole-carbon catalyst as DMFC anode catalyst. Electrochem. Commun. 10(6), 876–879 (2008)CrossRefGoogle Scholar
  64. 64.
    H.B. Zhao, J. Yang, L. Li, H. Li, J.L. Wang, Y.M. Zhang, Effect of over-oxidation treatment of Pt-Co/polypyrrole-carbon nanotube catalysts on methanol oxidation. Int. J. Hydrog. Energy 34(9), 3908–3914 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Soochow Institute for Energy and Materials InnovationS, College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nanoscience and TechnologySoochow UniversitySuzhouChina
  2. 2.Beijing Key Laboratory for Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy EngineeringBeijing University of TechnologyBeijingChina

Personalised recommendations