Evaluation of Cell Performance and Durability for Cathode Catalysts (Platinum Supported on Carbon Blacks or Conducting Ceramic Nanoparticles) During Simulated Fuel Cell Vehicle Operation: Start-Up/Shutdown Cycles and Load Cycles

  • Makoto Uchida
  • Katsuyoshi Kakinuma
  • Akihiro Iiyama


We summarized investigations on the evaluation of cell performance and durability for cathode catalysts on two types of supports, carbon blacks (CBs) and conducting ceramic nanoparticles, during simulated fuel cell vehicle (FCV) operation, including start-up/shutdown (SU/SD) cycles and load cycles. In cathode catalyst layers (CLs) using Pt supported on CBs (Pt/CBs), the effects of graphitized CB (GCB) and Pt nanoparticle size, as well as its dispersion state on the GCB, were investigated on both the performance and durability. The negative effects of the interim cyclic voltammetric measurements on the Pt/CB catalyst degradation during SU/SD cycling evaluation, which led to an overestimation of the degradation process, were also suggested. We found that catalyst degradation occurred not only in the outlet region but also in the inlet region during the gas-exchange SU. Degradation of CBs during a hydrogen passivation SU/SD process was found to decrease but still to occur, due to local cells arising from nonuniform distributions of ionomer and Pt particles. The effects of load cycle conditions, which involved open circuit and load holding times, and variations of current density, and humidity, on the durability of the cathode were also investigated. The buildup of Pt oxides at higher potentials during open circuit and re-reduction at lower potentials during high current density operation led to accelerated degradation; these conditions have relevance to ordinary operation with drastic load changes. For the intrinsic improvement of SU/SD durability, we synthesized conducting ceramic nanoparticles. The durability of the cathode CLs, using Pt supported on conducting ceramic nanoparticles with a fused-aggregate network structure, was superior to that of Pt/GCB. We also proposed that the cathode CL degradation can be mitigated by the use of ceramic nanoparticles in the anode because of the significant reduction of the reverse current due to the high resistivity in the air, termed the “atmospheric resistive switching mechanism” (ARSM).



This work was supported by funds for the “Research on Nanotechnology for High Performance Fuel Cells (HiPer-FC) and Superlative, Stable, and Scalable Performance Fuel Cell (SPer-FC) project” from the NEDO of Japan and the JSPS KAKENHI Grant Number B24350093. We are also grateful to Honda R&D Co., Ltd. and Mitsubishi Motors Corporation for discussion concern with evaluation methods for more practical operation.


  1. 1.
    R. Shimoi, T. Aoyama, A. Iiyama, Development of fuel cell stack durability based on actual vehicle test data: current status and future work. SAE Int. J. Engines 2, 960–970 (2009).  https://doi.org/10.4271/2009-01-1014 CrossRefGoogle Scholar
  2. 2.
    M. Yamamoto, H. Matsumori, Empirical model for polymer electolyte fuel cell electro catalyst degradation using platinum stress. Honda Techn. Rev. 28(1), 37–44 (2016), https://www.hondarandd.jp/summary.php?sid=49&lang=en. Accessed 23 Feb 2017
  3. 3.
    C.A. Reiser, L. Bregoli, T.W. Patterson, J.S. Yi, J. Deliang, M.L. Perry, T.D. Jarvi, A reverse-current decay mechanism for fuel cells. Electrochem. Solid-State Lett. 8, A273–A276 (2005).  https://doi.org/10.1149/1.1896466 CrossRefGoogle Scholar
  4. 4.
    P.J. Ferreira, G.J. la O’, Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, H.A. Gasteiger, Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells. A mechanistic investigation. J. Electrochem. Soc. 152, A2256–A2271 (2005).  https://doi.org/10.1149/1.2050347 CrossRefGoogle Scholar
  5. 5.
    A. Ohma, K. Shinohara, A. Iiyama, T. Yoshida, A. Daimaru, Membrane and catalyst performance targets for automotive fuel cells by FCCJ membrane, catalyst, MEA WG. ECS Trans. 41, 775–784 (2011).  https://doi.org/10.1149/1.3635611 CrossRefGoogle Scholar
  6. 6.
    N. Linse, L. Gubler, G.G. Scherer, A. Wokaun, The effect of platinum on carbon corrosion behavior in polymer electrolyte fuel cells. Electrochim. Acta 56, 7541–7549 (2011).  https://doi.org/10.1016/j.electacta.2011.06.093 CrossRefGoogle Scholar
  7. 7.
    Y. Ishigami, K. Takada, H. Yano, J. Inukai, M. Uchida, Y. Nagumo, T. Hyakutake, H. Nishide, M. Watanabe, Corrosion of carbon supports at cathode during hydrogen/air replacement at anode studied by visualization of oxygen partial pressures in a PEFC-start-up/shut-down simulation. J. Power Sources 196, 3003–3008 (2011).  https://doi.org/10.1016/j.jpowsour.2010.11.092 CrossRefGoogle Scholar
  8. 8.
    R. Darling, J. Meyers, Kinetic model of platinum dissolution in PEMFCs. J. Electrochem. Soc. 150, A1523–A1527 (2003).  https://doi.org/10.1149/1.1613669 CrossRefGoogle Scholar
  9. 9.
    J. Xie, D.L. Wood, D.M. Wayne, T.A. Zawodinski, P. Atanassov, R.L. Borup, Durability of PEFCs at high humidity conditions. J. Electrochem. Soc. 152, A104–A113 (2005).  https://doi.org/10.1149/1.1830355 CrossRefGoogle Scholar
  10. 10.
    J. Xie, D.L. Wood, K.L. More, P. Atanassov, R.L. Borup, Microstructural changes of membrane electrode assemblies during PEFC durability testing at high humidity conditions. J. Electrochem. Soc. 152, A1011–A1020 (2005).  https://doi.org/10.1149/1.1873492 CrossRefGoogle Scholar
  11. 11.
    T.W. Patterson, R.M. Darling, Damage to the cathode catalyst of a PEM fuel cell caused by localized fuel starvation. Electrochem. Solid-State Lett. 9, A183–A185 (2006).  https://doi.org/10.1149/1.2167930 CrossRefGoogle Scholar
  12. 12.
    Z.Y. Liu, B.K. Brady, R.N. Carter, B. Litteer, M. Budinski, J.K. Hyun, D.A. Muller, Characterization of carbon corrosion-induced structural damage of PEM fuel cell cathode electrodes caused by local fuel starvation. J. Electrochem. Soc. 155, B979–B984 (2008).  https://doi.org/10.1149/1.2956198 CrossRefGoogle Scholar
  13. 13.
    M. Hara, M. Lee, C.-H. Liu, B.-H. Chen, Y. Yamashita, M. Uchida, H. Uchida, M. Watanabe, Electrochemical and Raman spectroscopic evaluation of Pt/graphitized carbon black catalyst durability for the start/stop operating condition of polymer electrolyte fuel cells. Electrochim. Acta 70, 171–181 (2012).  https://doi.org/10.1016/j.electacta.2012.03.043 CrossRefGoogle Scholar
  14. 14.
    M. Lee, M. Uchida, K. Okaya, H. Uchida, M. Watanabe, Durability of Pt/graphitized carbon catalyst prepared by the nanocapsule method for the start/stop operating condition of polymer electrolyte fuel cells. Electrochemistry 79, 381–387 (2011).  https://doi.org/10.5796/electrochemistry.79.381 CrossRefGoogle Scholar
  15. 15.
    P.V. Shanahan, L. Xu, C. Liang, M. Waje, S. Dai, Y.S. Yan, Graphitic mesoporous carbon as a durable fuel cell catalyst support. J. Power Sources 185, 423–427 (2008).  https://doi.org/10.1016/j.jpowsour.2008.06.041 CrossRefGoogle Scholar
  16. 16.
    C. Wang, M. Waje, X. Wang, J.M. Tang, R.C. Haddon, Y.S. Yan, Graphitic mesoporous carbon as a durable fuel cell catalyst support. Nano Lett. 4, 345–348 (2004).  https://doi.org/10.1021/nl034952p CrossRefGoogle Scholar
  17. 17.
    H. Yano, M. Kataoka, H. Yamashita, H. Uchida, M. Watanabe, Oxygen reduction activity of carbon-supported Pt−M (M = V, Ni, Cr, Co, and Fe) alloys prepared by nanocapsule method. Langmuir 23, 6438–6445 (2007).  https://doi.org/10.1021/la070078u CrossRefGoogle Scholar
  18. 18.
    H. Yano, T. Akiyama, P. Bele, H. Uchida, M. Watanabe, Durability of Pt/graphitized carbon catalysts for the oxygen reduction reaction prepared by the nanocapsule method. Phys. Chem. Chem. Phys. 12, 3806–3814 (2010).  https://doi.org/10.1039/b923460h CrossRefGoogle Scholar
  19. 19.
    Y. Wang, D.C. Alsmeyer, R.L. McCreery, Raman spectroscopy of carbon materials: structural basis of observed spectra. Chem. Mater. 2, 557–563 (1990).  https://doi.org/10.1021/cm00011a018 CrossRefGoogle Scholar
  20. 20.
    A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Poschl, Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43, 1731–1742 (2005).  https://doi.org/10.1016/j.carbon.2005.02.018 CrossRefGoogle Scholar
  21. 21.
    M. Marcinek, L.J. Hardwick, G.Z. Zukowska, R. Kostecki, Microwave plasma chemical vapor deposition of graphitic carbon thin films. Carbon 48, 1552–1557 (2010).  https://doi.org/10.1016/j.carbon.2009.12.052 CrossRefGoogle Scholar
  22. 22.
    Y.-C. Park, K. Kakinuma, M. Uchida, D.A. Tryk, T. Kamino, H. Uchida, M. Watanabe, Investigation of the corrosion of carbon supports in polymer electrolyte fuel cells using simulated start-up/shutdown cycling. Electrochim. Acta 91, 195–207 (2013).  https://doi.org/10.1016/j.electacta.2012.12.082 CrossRefGoogle Scholar
  23. 23.
    P.L. Antonucci, F. Romeo, M. Minutoli, E. Alderucci, N. Giordano, Electrochemical corrosion behavior of carbon black in phosphoric acid. Carbon 26, 197–203 (1988).  https://doi.org/10.1016/0008-6223(88)90037-1 CrossRefGoogle Scholar
  24. 24.
    M.F. Mathais, R. Makharia, H.A. Gasteiger, J.J. Conley, T.J. Fuller, C.J. Gittleman, S.S. Kocha, D.P. Miller, C.K. Mittelsteadt, T. Xie, S.G. Yan, P.T. Yu, Two fuel cell cars in every garage? Electrochem. Soc. Interface 14, 24–35 (2005), https://www.electrochem.org/dl/interface/fal/fal05/IF8-05_Pg24-35.pdf. Accessed 23 Feb 2017
  25. 25.
    C.S. Ball, S.L. Hudson, D. Thompsett, B. Theobald, An investigation into factors affecting the stability of carbons and carbon supported platinum and platinum/cobalt alloy catalysts during 1.2 V potentiostatic hold regimes at a range of temperatures. J. Power Sources 171, 18–25 (2007).  https://doi.org/10.1016/j.jpowsour.2006.11.004 CrossRefGoogle Scholar
  26. 26.
    K.H. Lim, O. HS, S.E. Jang, Y.J. Ko, H.J. Kim, H. Kim, Effect of operating conditions on carbon corrosion in polymer electrolyte membrane fuel cells. J. Power Sources 193, 575–579 (2009).  https://doi.org/10.1016/j.jpowsour.2009.04.006 CrossRefGoogle Scholar
  27. 27.
    M. Cai, M.S. Ruthkosky, B. Merzougui, S. Swathirajan, M.P. Balogh, O. SH, Investigation of thermal and electrochemical degradation of fuel cell catalysts. J. Power Sources 160, 977–986 (2006).  https://doi.org/10.1016/j.jpowsour.2006.03.033 CrossRefGoogle Scholar
  28. 28.
    K.J.J. Mayrhofer, J.C. Meier, S.J. Ashton, G.K.H. Wiberg, F. Kraus, M. Hanzlik, M. Arenz, Fuel cell catalyst degradation on the nanoscale. Electrochem. Commun. 10, 1144–1147 (2008).  https://doi.org/10.1016/j.elecom.2008.05.032 CrossRefGoogle Scholar
  29. 29.
    J. Wang, G. Yin, Y. Shao, Z. Wang, Y. Gao, Electrochemical durability investigation of single-walled and multi-walled carbon nanotubes under potentiostatic conditions. J. Power Sources 176, 128–131 (2008).  https://doi.org/10.1016/j.jpowsour.2007.10.057 CrossRefGoogle Scholar
  30. 30.
    L. Li, Y. Xing, Electrochemical durability of carbon nanotubes in noncatalyzed and catalyzed oxidations. J. Electrochem. Soc. 153, A1823–A1828 (2006).  https://doi.org/10.1149/1.2234659 CrossRefGoogle Scholar
  31. 31.
    S. Maass, F. Finsterwalder, G. Frank, R. Hartmann, C. Merten, Carbon support oxidation in PEM fuel cell cathodes. J. Power Sources 176, 444–451 (2008).  https://doi.org/10.1016/j.jpowsour.2007.08.053 CrossRefGoogle Scholar
  32. 32.
    W. Li, A.M. Lane, Investigation of Pt catalytic effects on carbon support corrosion of the cathode catalyst in PEM fuel cells using DEMS spectra. Electrochem. Commun. 11, 1187–1190 (2009).  https://doi.org/10.1016/j.elecom.2009.04.001 CrossRefGoogle Scholar
  33. 33.
    W. Bi, Q. Sun, Y. Deng, T.F. Fuller, The effect of humidity and oxygen partial pressure on degradation of Pt/C catalyst in PEM fuel cell. Electrochim. Acta 54, 1826–1833 (2009).  https://doi.org/10.1016/j.electacta.2008.10.008 CrossRefGoogle Scholar
  34. 34.
    F. Ettingshausen, J. Kleemann, A. Marcu, G. Toth, H. Fuess, C. Roth, Dissolution and migration of platinum in PEMFCs investigated for start/stop cycling and high potential degradation. Fuel Cells 11, 238–245 (2011).  https://doi.org/10.1002/fuce.201000051 CrossRefGoogle Scholar
  35. 35.
    T. Yoda, H. Uchida, M. Watanabe, Effects of operating potential and temperature on degradation of electrocatalyst layer for PEFCs. Electrochim. Acta 52, 5997–6005 (2007).  https://doi.org/10.1016/j.electacta.2007.03.049 CrossRefGoogle Scholar
  36. 36.
    Y. Sugawara, T. Okayasu, A.P. Yadav, A. Nishikata, T. Tsuru, Dissolution mechanism of platinum in sulfuric acid solution. J. Electrochem. Soc. 159, F779–F786 (2012).  https://doi.org/10.1149/2.017212jes CrossRefGoogle Scholar
  37. 37.
    K.G. Gallagher, D.T. Wong, T.F. Fuller, The effect of transient potential exposure on the electrochemical oxidation of carbon black in low-temperature fuel cells. J. Electrochem. Soc. 155, B488–B493 (2008).  https://doi.org/10.1149/1.2891138 CrossRefGoogle Scholar
  38. 38.
    Y.-C. Park, K. Kakinuma, M. Uchida, H. Uchida, M. Watanabe, Deleterious effects of interim cyclic voltammetry on Pt/carbon blackcatalyst degradation during start-up/shutdown cycling evaluation. Electrochim. Acta 123, 84–92 (2014).  https://doi.org/10.1016/j.electacta.2013.12.120 CrossRefGoogle Scholar
  39. 39.
    N.P. Lebedeva, M.T.M. Koper, J.M. Feliu, R.A. van Santen, Mechanism and kinetics of the electrochemical CO adlayer oxidation on Pt(111). J. Electroanal. Chem. 524–525, 242–251 (2002).  https://doi.org/10.1016/S0022-0728(02)00669-1 CrossRefGoogle Scholar
  40. 40.
    B. Wickman, H. Gronbeck, P. Hanarp, B. Kasemo, Corrosion induced degradation of Pt/C model electrodes measured with electrochemical quartz crystal microbalance. J. Electrochem. Soc. 157, B592–B598 (2010).  https://doi.org/10.1149/1.3309730 CrossRefGoogle Scholar
  41. 41.
    U.S. DRIVE Partnership Fuel Cell Technical Team, Cell component accelerated stress test and polarization curve protocols for polymer electrolyte membrane fuel cells (electrocatalysts, supports, membranes, and membrane electrode assemblies), http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/component durability may 2010.pdf. Accessed 8 Feb 2017
  42. 42.
    Y. Yamashita, S. Itami, J. Takano, M. Kodama, K. Kakinuma, M. Hara, M. Watanabe, M. Uchida, Durability of Pt catalysts supported on graphitized carbon-black during gas-exchange start-up operation similar to that used for fuel cell vehicles. J. Electrochem. Soc. 163, F644–F650 (2016).  https://doi.org/10.1149/2.0771607jes CrossRefGoogle Scholar
  43. 43.
    S. Kreitmeier, A. Wokaun, B.¨u. FN, Local catalyst support degradation during polymer electrolyte fuel cell start-up and shutdown. J. Electrochem. Soc. 159, F787–F793 (2012).  https://doi.org/10.1149/2.019212jes CrossRefGoogle Scholar
  44. 44.
    A. Lamibrac, G. Maranzana, O. Lottin, J. Dillet, J. Mainka, S. Didierjean, A. Thomas, C. Moyne, Experimental characterization of internal currents during the start-up of a proton exchange membrane fuel cell. J. Power Sources 196, 9451–9458 (2011).  https://doi.org/10.1016/j.jpowsour.2011.07.013 CrossRefGoogle Scholar
  45. 45.
    J. Durst, A. Lamibrac, F. Charlot, J. Dillet, L.F. Castanheira, G. Maranzana, L. Dubau, F. Maillard, M. Chatenet, O. Lottin, Degradation heterogeneities induced by repetitive start/stop events in proton exchange membrane fuel cell: inlet vs. outlet and channel vs. land. Appl. Catal. B-Environ. 138, 416–426 (2013).  https://doi.org/10.1016/j.apcatb.2013.03.021 CrossRefGoogle Scholar
  46. 46.
    R.D. Tarey, R.S. Rastogi, K.L. Chopra, Characterization of thin films by glancing incidence X-ray diffraction. Rigaku J. 4, 11–15 (1987), http://rigaku.com/downloads/journal/Vol4.1987/tarey.pdf. Accessed 23 Feb 2017
  47. 47.
    Y. Ishigami, I. Maeda, K. Takada, T. Hyakutake, T. Suga, J. Inukai, M. Uchida, Y. Nagumo, H. Nishide, M. Watanabe, Real-time visualization of CO2 generated by corrosion of the carbon support in a PEFC cathode. Electrochem. Solid-State Lett. 15, B51–B53 (2012).  https://doi.org/10.1149/2.018204esl CrossRefGoogle Scholar
  48. 48.
    Y. Yamashita, S. Itami, J. Takano, M. Kodama, K. Kakinuma, H. Uchida, M. Watanabe, A. Iiyama, M. Uchida, Degradation mechanisms of carbon supports under hydrogen passivation startup and shutdown process for PEFCs. J. Electrochem. Soc. 164, F181–F187 (2017).  https://doi.org/10.1149/2.0101704jes CrossRefGoogle Scholar
  49. 49.
    K. Miyata, C. Wake, Japanese patent 5,647,079, 2014Google Scholar
  50. 50.
    T. Ioroi, T. Akita, M. Asahi, S. Yamazaki, Z. Siroma, N. Fujiwara, K. Yasuda, Platinum- titanium alloy catalysts on a Magnéli-phase titanium oxide support for improved durability in polymer electrolyte fuel cells. J. Power Sources 223, 183–189 (2013).  https://doi.org/10.1016/j.jpowsour.2012.09.063 CrossRefGoogle Scholar
  51. 51.
    S.-Y. Huang, P. Ganesan, B.N. Popov, Electrocatalytic activity and stability of niobium-doped titanium oxide supported platinum catalyst for polymer electrolyte membrane fuel cells. Appl. Catal. B Environ. 96, 224–231 (2010).  https://doi.org/10.1016/j.apcatb.2010.02.025 CrossRefGoogle Scholar
  52. 52.
    T.B. Do, M. Cai, M.S. Ruthkosky, T.E. Moylan, Niobium-doped titanium oxide for fuel cell application. Electrochim. Acta 55, 8013–8017 (2011).  https://doi.org/10.1016/j.electacta.2010.03.027 CrossRefGoogle Scholar
  53. 53.
    H. Chhina, S. Campbell, O. Kesler, Ex situ and in situ stability of platinum supported on niobium-doped titania for PEMFCs. J. Electrochem. Soc. 156, B1232–B1237 (2009).  https://doi.org/10.1149/1.3184155 CrossRefGoogle Scholar
  54. 54.
    A. Kumar, V. Ramani, Strong metal-support interactions enhance the activity and durability of platinum supported on tantalum-modified titanium dioxide. Electrocatalysts ACS Catal. 4, 1516–1525 (2014).  https://doi.org/10.1021/cs500116h CrossRefGoogle Scholar
  55. 55.
    A. Masao, S. Noda, F. Takasaki, K. Ito, K. Sasaki, Carbon-free Pt electrocatalysts supported on SnO2 for polymer electrolyte fuel cells. Electrochem. Solid-State Lett. 12, B119–B122 (2009).  https://doi.org/10.1149/1.3152325 CrossRefGoogle Scholar
  56. 56.
    Y. Chino, K. Taniguchi, Y. Senoo, K. Kakinuma, M. Hara, M. Watanabe, M. Uchida, Effect of added graphitized CB on both performance and durability of Pt/Nb-SnO2 cathodes for PEFCs. J. Electrochem. Soc. 162, F736–F743 (2015).  https://doi.org/10.1149/2.0651507jes CrossRefGoogle Scholar
  57. 57.
    E. Fabbri, A. Rabis, R. Kotz, T.J. Schmidt, Pt nanoparticles supported on Sb-doped SnO2 porous structures: developments and issues. Phys. Chem. Chem. Phys. 16, 13672–13681 (2014).  https://doi.org/10.1039/C4CP00238E CrossRefGoogle Scholar
  58. 58.
    Y. Liu, E.W. Mustain, Stability limitations for Pt/Sn-In2O3 and Pt/in-SnO2 in acidic electrochemical systems. Electrochim. Acta 115, 116–125 (2014).  https://doi.org/10.1016/j.electacta.2013.10.155 CrossRefGoogle Scholar
  59. 59.
    C. Takei, K. Kakinuma, K. Kawashima, K. Tashiro, M. Watanabe, M. Uchida, Load cycle durability of a graphitized carbon black-supported platinum catalyst in polymer electrolyte fuel cell cathodes. J. Power Sources 324, 729–737 (2016).  https://doi.org/10.1016/j.jpowsour.2016.05.117 CrossRefGoogle Scholar
  60. 60.
    D.C. Johnson, D.T. Napp, S. Bruckenstein, A ring-disk electrode study of the current/potential behaviour of platinum in 1.0 M sulphuric and 0.1 M perchloric acids. Electrochim. Acta 15, 1493–1509 (1970).  https://doi.org/10.1016/0013-4686(70)80070-6 CrossRefGoogle Scholar
  61. 61.
    D.A.J. Rand, R. Woods, A study of the dissolution of platinum, palladium, rhodium and gold electrodes in 1 m sulpuric acid by cyclic voltammetry. J. Electroanal. Chem. Interfacial Electrochem. 35, 209–218 (1972).  https://doi.org/10.1016/S0022-0728(72)80308-5 CrossRefGoogle Scholar
  62. 62.
    X. Wang, R. Kumar, D.J. Myers, Effect of voltage on platinum dissolution: relevance to polymer electrolyte fuel cells batteries, fuel cells, and energy conversion. Electrochem. Solid-State Lett. 9, A225–A227 (2006).  https://doi.org/10.1149/1.2180536 CrossRefGoogle Scholar
  63. 63.
    J.A. Bett, K. Kinoshita, P. Stonehart, Crystallite growth of platinum dispersed on graphitized carbon black. J. Catalysis 35, 307–316 (1974).  https://doi.org/10.1016/0021-9517(74)90209-7 CrossRefGoogle Scholar
  64. 64.
    J.A.S. Bett, K. Kinoshita, P. Stonehart, Crystallite growth of platinum dispersed on graphitized carbon black: II. Effect of liquid environment. J. Catalysis 41, 124–133 (1976).  https://doi.org/10.1016/0021-9517(76)90207-4 CrossRefGoogle Scholar
  65. 65.
    S. Kawahara, S. Mitsushima, K. Ota, N. Kamiya, Deterioration of Pt catalyst under potential cycling. ECS Trans. 3, 625–631 (2006).  https://doi.org/10.1149/1.2356183 CrossRefGoogle Scholar
  66. 66.
    S. Mitsushima, S. Kawahara, K. Ota, N. Kamiya, Consumption rate of Pt under potential cycling. J. Electrochem. Soc. 154, B153–B158 (2007).  https://doi.org/10.1149/1.2400596 CrossRefGoogle Scholar
  67. 67.
    S. Mitsushima, Y. Koizumi, S. Uzuka, K. Ota, Dissolution of platinum in acidic media. Electrochim. Acta 54, 455–460 (2008).  https://doi.org/10.1016/j.electacta.2008.07.052 CrossRefGoogle Scholar
  68. 68.
    F. Hiraoka, K. Matsuzawa, S. Mitsushima, Degradation of Pt/C under various potential cycling patterns. Electrocatalysis 4, 10–16 (2013).  https://doi.org/10.1007/s12678-012-0105-2 CrossRefGoogle Scholar
  69. 69.
    M. Uchimura, S.S. Kocha, The impact of cycle profile on PEMFC durability. ECS Trans. 11, 1215–1226 (2007).  https://doi.org/10.1149/1.2781035 CrossRefGoogle Scholar
  70. 70.
    M. Uchimura, S. Sugawara, Y. Suzuki, J. Zhang, S.S. Kocha, Electrocatalyst durability under simulated automotive drive cycles. ECS Trans. 16, 225–234 (2008).  https://doi.org/10.1149/1.2981858 CrossRefGoogle Scholar
  71. 71.
    K. Yasuda, A. Taniguchi, T. Akita, T. Ioroi, Z. Siroma, Platinum dissolution and deposition in the polymer electrolyte membrane of a PEM fuel cell as studied by potential cycling. Phys. Chem. Chem. Phys. 8, 746–752 (2006).  https://doi.org/10.1039/B514342J CrossRefGoogle Scholar
  72. 72.
    A. Kongkanand, J.M. Ziegelbauer, Surface platinum electrooxidation in the presence of oxygen. J. Phys. Chem. C 116, 3684–3693 (2012).  https://doi.org/10.1021/jp211490a CrossRefGoogle Scholar
  73. 73.
    R.L. Borup, J.R. Davey, F.H. Garzon, D.L. Wood, M.A. Inbody, PEM fuel cell electrocatalyst durability measurements. J. Power Sources 163, 76–81 (2006).  https://doi.org/10.1016/j.jpowsour.2006.03.009 CrossRefGoogle Scholar
  74. 74.
    S. Chen, H.A. Gasteiger, K. Hayakawa, T. Tada, Y. Shao-Horn, Platinum-alloy cathode catalyst degradation in proton exchange membrane fuel cells: nanometer-scale compositional and morphological changes. J. Electrochem. Soc. 157, A82–A97 (2010).  https://doi.org/10.1149/1.3258275 CrossRefGoogle Scholar
  75. 75.
    B.E. Conway, Electrochemical oxide film formation at noble metals as a surface-chemical process. Prog. Surf. Sci. 49, 331–452 (1995).  https://doi.org/10.1016/0079-6816(95)00040-6 CrossRefGoogle Scholar
  76. 76.
    H. Imai, K. Izumi, M. Matsumoto, Y. Kubo, K. Kato, Y. Imai, In situ and real-time monitoring of oxide growth in a few monolayers at surfaces of platinum nanoparticles in aqueous media. J. Am. Chem. Soc. 131, 6293–6300 (2009).  https://doi.org/10.1021/ja810036h CrossRefGoogle Scholar
  77. 77.
    G. Jerkiewicz, G. Vatankhah, J. Lessard, M.P. Soriaga, Y.-S. Park, Surface-oxide growth at platinum electrodes in aqueous H2SO4 reexamination of its mechanism through combined cyclic-voltammetry, electrochemical quartz-crystal nanobalance, and auger electron spectroscopy measurements. Electrochim. Acta 49, 1451–1459 (2003).  https://doi.org/10.1016/j.electacta.2003.11.008 CrossRefGoogle Scholar
  78. 78.
    M. Wakisaka, S. Asizawa, H. Uchida, M. Watanabe, In situ STM observation of morphological changes of the Pt (111) electrode surface during potential cycling in 10 mM HF solution. Phys. Chem. Chem. Phys. 12, 4184–4190 (2010).  https://doi.org/10.1039/B923956A CrossRefGoogle Scholar
  79. 79.
    M. Alsabet, M. Grden, G. Jerkiewicz, Comprehensive study of the growth of thin oxide layers on Pt electrodes under well-defined temperature, potential, and time conditions. J. Electroanal. Chem. 589, 120–127 (2006).  https://doi.org/10.1016/j.jelechem.2006.01.022 CrossRefGoogle Scholar
  80. 80.
    Q. Yan, H. Toghiani, J. Wu, Investigation of water transport through membrane in a PEM fuel cell by water balance experiments. J. Power Sources 158, 316–325 (2006).  https://doi.org/10.1016/j.jpowsour.2005.09.013 CrossRefGoogle Scholar
  81. 81.
    S. Takaichi, H. Uchida, M. Watanabe, Distribution profile of hydrogen and oxygen permeating in polymer electrolyte membrane measured by mixed potential. Electrochem. Commun. 9, 1975–1979 (2007).  https://doi.org/10.1016/j.elecom.2007.05.011 CrossRefGoogle Scholar
  82. 82.
    T. Aoki, A. Matsunaga, Y. Ogami, A. Maekawa, S. Mitsushima, K. Ota, H. Nishikawa, The influence of polymer electrolyte fuel cell cathode degradation on the electrode polarization. J. Power Sources 195, 2182–2188 (2010).  https://doi.org/10.1016/j.jpowsour.2009.10.074 CrossRefGoogle Scholar
  83. 83.
    D.H. Lim, W.J. Lee, N.L. Macy, W.H. Smyrl, Electrochemical durability investigation of Pt/TiO2 nanotube catalysts for polymer electrolyte membrane fuel cells. Electrochem. Solid-State Lett. 12, B123–B125 (2009).  https://doi.org/10.1149/1.3152333 CrossRefGoogle Scholar
  84. 84.
    S. Yin, S. Mu, M. Pan, Z. Fu, A highly stable TiB2-supported Pt catalyst for polymer electrolyte membrane fuel cells. J. Power Sources 196, 7931–7936 (2011).  https://doi.org/10.1016/j.jpowsour.2011.05.033 CrossRefGoogle Scholar
  85. 85.
    B. Avasarala, P. Haldar, Electrochemical oxidation behavior of titanium nitride based electrocatalysts under PEM fuel cell conditions. Electrochim. Acta 55, 9024–9034 (2010).  https://doi.org/10.1016/j.electacta.2010.08.035 CrossRefGoogle Scholar
  86. 86.
    Y. Liu, W.E. Mustain, High stability, high activity Pt/ITO oxygen reduction electrocatalysts. J. Am. Chem. Soc. 135, 530–533 (2013).  https://doi.org/10.1021/ja307635r CrossRefGoogle Scholar
  87. 87.
    F. Takasaki, S. Matsuie, Y. Takabatake, Z. Noda, A. Hayashi, Y. Shiratori, K. Ito, K. Sasaki, Carbon-free Pt electrocatalysts supported on SnO2 for polymer electrolyte fuel cells: electrocatalytic activity and durability. J. Electrochem. Soc. 158, B1270–B1275 (2011).  https://doi.org/10.1149/1.3625918 CrossRefGoogle Scholar
  88. 88.
    S. Keerthi, H. Rob, C. Stephen, Y. Siyu, Z. Jiujun, Electrocatalytic activity and durability of Pt/NbO2 and Pt/Ti4O7 nanofibers for PEM fuel cell oxygen reduction reaction. Electrochim. Acta 59, 538–547 (2012).  https://doi.org/10.1016/j.electacta.2011.11.005 CrossRefGoogle Scholar
  89. 89.
    B. Wickman, M. Wesselmark, C. Lagergren, G. Lindbergh, Tungsten oxide in polymer electrolyte fuel cell electrodes-a thin-film model electrode study. Electrochim. Acta 56, 9496–9503 (2011).  https://doi.org/10.1016/j.electacta.2011.08.046 CrossRefGoogle Scholar
  90. 90.
    A. Ignaszak, C. Song, W. Zhu, J. Zhang, A. Bauer, R. Baker, V. Neburchilov, S. Ye, S. Campbell, Titanium carbide and its core-shelled serivative TiC@TiO2 as catalyst supports for proton exchange membrane fuel cells. Electrochim. Acta 69, 397–405 (2012).  https://doi.org/10.1016/j.electacta.2012.03.039 CrossRefGoogle Scholar
  91. 91.
    W. Yao, J. Yang, J. Wang, Y. Nuli, Chemical deposition of platinum nanoparticles on iridium oxide for oxygen electrode of unitized regenerative fuel cell. Electrochem. Commun. 9, 1029–1034 (2007).  https://doi.org/10.1016/j.elecom.2006.12.017 CrossRefGoogle Scholar
  92. 92.
    T. Ioroi, H. Senoh, S. Yamazaki, Z. Siroma, N. Fujiwara, K. Yasuda, Stability of corrosion-resistant magnéli-phase Ti4O7-supported PEMFC catalysts at high potentials. J. Electrochem. Soc. 155, B321–B326 (2008).  https://doi.org/10.1149/1.2833310 CrossRefGoogle Scholar
  93. 93.
    T. Ioroi, Z. Siroma, N. Fujiwara, S. Yamazaki, K. Yasuda, Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells. Electrochem. Commun. 7, 183–188 (2005).  https://doi.org/10.1016/j.elecom.2004.12.007 CrossRefGoogle Scholar
  94. 94.
    Y. Wang, S. Song, V. Maragou, P.K. Shen, P. Tsiakaras, High surface area tungsten carbide microspheres as effective Pt catalyst support for oxygen reduction reaction. Appl Catal B 89, 223–228 (2009).  https://doi.org/10.1016/j.apcatb.2008.11.032 CrossRefGoogle Scholar
  95. 95.
    S.Y. Huang, P. Ganesan, B.N. Popov, Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell. Appl Catal B 102, 71–77 (2011).  https://doi.org/10.1016/j.apcatb.2010.11.026 CrossRefGoogle Scholar
  96. 96.
    N.R. Elezovic, B.M. Babic, V.R. Radmilovic, L.M. Vracar, N.V. Krstajic, Nb-TiO2 supported platinum nanocatalyst for oxygen reduction reaction in alkaline solutions. Electrochim. Acta 56, 9020–9026 (2011).  https://doi.org/10.1016/j.electacta.2011.04.075 CrossRefGoogle Scholar
  97. 97.
    C.V. Subban, Q. Zhou, A. Hu, T.E. Moylan, F.T. Wagner, F.J. DiSalvo, Sol-gel synthesis, electrochemical characterization and stability testing of Ti0.7W0.3O2 nanoparticles for catalyst support applications in proton-exchange membrane fuel cells. J. Am. Chem. Soc. 132, 17531–17536 (2010).  https://doi.org/10.1021/ja1074163 CrossRefGoogle Scholar
  98. 98.
    C. Zhang, H. Yu, Y. Li, L. Fu, Y. Gao, W. Song, Z. Shao, B. Yi, Simple synthesis of Pt/TiO2 nanotube arrays with high activity and stability. J. Electroanal. Chem. 701, 14–19 (2013).  https://doi.org/10.1016/j.jelechem.2013.04.012 CrossRefGoogle Scholar
  99. 99.
    M.S. Saha, R. Li, M. Cai, X. Sun, High electrocatalytic activity of platinum nanoparticles on SnO2 nanowire-based electrodes. Electrochem. Solid-State Lett. 10, B130–B133 (2007).  https://doi.org/10.1149/1.2745632 CrossRefGoogle Scholar
  100. 100.
    K. Kakinuma, Y. Wakasugi, M. Uchida, T. Kamino, H. Uchida, M. Watanabe, Synthesis and electrochemical characterization of new Pt catalyst supported on well crystallized titanium nitride nano-meter sized particles for polymer electrolyte fuel cell. Electrochemistry 79, 399–403 (2011).  https://doi.org/10.5796/electrochemistry.79.399 CrossRefGoogle Scholar
  101. 101.
    K. Kakinuma, Y. Wakasugi, M. Uchida, T. Kamino, H. Uchida, S. Deki, M. Watanabe, Preparation of titanium nitride-supported platinum catalysts with well controlled morphology and their properties relevant to polymer electrolyte fuel cells. Electrochim. Acta 77, 279–284 (2012).  https://doi.org/10.1016/j.electacta.2012.06.001 CrossRefGoogle Scholar
  102. 102.
    H. Shintani, K. Kakinuma, H. Uchida, M. Watanabe, M. Uchida, Performance of practical-sized membrane-electrode assemblies using titanium nitride-supported platinum catalysts mixed with acetylene black as the cathode catalyst layer. J. Power Sources 280, 593–599 (2015).  https://doi.org/10.1016/j.jpowsour.2015.01.132 CrossRefGoogle Scholar
  103. 103.
    M. Chiwata, K. Kakinuma, M. Wakisaka, M. Uchida, S. Deki, M. Watanabe, H. Uchida, Oxygen reduction reaction activity and durability of Pt catalysts supported on titanium carbide. Catalysts 5, 966–980 (2015).  https://doi.org/10.3390/catal5020966 CrossRefGoogle Scholar
  104. 104.
    K. Kakinuma, M. Uchida, T. Kamino, H. Uchida, M. Watanabe, Synthesis and electrochemical characterization of Pt catalyst supported on Sn0.96Sb0.04O2−δ with a network structure. Electrochim. Acta 56, 2881–2887 (2011).  https://doi.org/10.1016/j.electacta.2010.12.077 CrossRefGoogle Scholar
  105. 105.
    K. Kakinuma, Y. Chino, Y. Senoo, M. Uchida, T. Kamino, H. Uchida, M. Watanabe, Characterization of Pt catalysts on Nb-doped and Sb-doped SnO2−δ support materials with aggregated structure by rotating disk electrode and fuel cell measurement. Electrochim. Acta 110, 316–324 (2013).  https://doi.org/10.1016/j.electacta.2013.06.127 CrossRefGoogle Scholar
  106. 106.
    Y. Senoo, K. Kakinuma, M. Uchida, H. Uchida, S. Deki, M. Watanabe, Improvements in electrical and electrochemical properties of Nb-doped SnO2-δ supports for fuel cell cathodes due to aggregation and Pt loading. RSC Adv. 4, 32180–32188 (2014).  https://doi.org/10.1039/c4ra03988b CrossRefGoogle Scholar
  107. 107.
    Y. Senoo, K. Kakinuma, M. Uchida, H. Uchida, S. Deki, M. Watanabe, Cathodic performance and high potential durability of Ta-SnO2-δ-supported Pt catalysts for PEFC cathodes. Electrochem. Commun. 51, 37–40 (2015).  https://doi.org/10.1016/j.elecom.2014.12.005 CrossRefGoogle Scholar
  108. 108.
    K. Kakinuma, I. Kim, Y. Senoo, H. Yano, M. Watanabe, M. Uchida, Electrochemical oxidation of hydrolyzed poly oxymethylene-dimethyl ether by PtRu catalysts on Nb-doped SnO2-δ supports for direct oxydation fuel cells. ACS Appl. Mater. Interfaces 6, 22138–22145 (2014).  https://doi.org/10.1021/am505553b CrossRefGoogle Scholar
  109. 109.
    N. Kamiuchi, K. Taguchi, T. Matsui, R. Kikuchi, K. Eguchi, Sintering and redispersion of platinum catalysts supported on tin oxide. Appl. Catal. B Environ. 89, 65–72 (2009).  https://doi.org/10.1016/j.apcatb.2008.11.026 CrossRefGoogle Scholar
  110. 110.
    N. Kamiuchi, T. Matsui, R. Kikuchi, K. Eguchi, Nanoscopic observation of strong chemical interaction between Pt and Tin oxide. J. Phys. Chem. C 111, 16470–16476 (2007).  https://doi.org/10.1021/jp0745337 CrossRefGoogle Scholar
  111. 111.
    J.F. Boyle, K.A. Jones, The effects of CO, water vapor and surface temperature on the conductivity of a SnO2 gas sensor. J. Electron. Mater. 6, 717–733 (1977).  https://doi.org/10.1007/BF02660346 CrossRefGoogle Scholar
  112. 112.
    N. Barsan, U. Weimar, Conduction model of metal oxide gas sensors. J. Electroceram. 7, 143–167 (2001).  https://doi.org/10.1023/A:1014405811371 CrossRefGoogle Scholar
  113. 113.
    A. Fujishima, X. Zhang, A.D. Tryk, TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515–582 (2008).  https://doi.org/10.1016/j.surfrep.2008.10.001 CrossRefGoogle Scholar
  114. 114.
    H. Shintani, Y. Kojima, K. Kakinuma, M. Watanabe, M. Uchida, Novel strategy to mitigate cathode catalyst degradation during air/air startup cycling via the atmospheric resistive switching mechanism of a hydrogen anode with a platinum catalyst supported on tantalum-doped titanium dioxide. J. Power Sources 294, 292–298 (2015).  https://doi.org/10.1016/j.jpousour.2015.06.072 CrossRefGoogle Scholar
  115. 115.
    Y. Chino, K. Kakinuma, D.A. Tryk, M. Watanabe, M. Uchida, Influence of Pt loading and cell potential on the HF ohmic resistance of an Nb-doped SnO2-supported Pt cathode for PEFCs. J. Electrochem. Soc. 163, F97–F105 (2016).  https://doi.org/10.1149/2.0571602jes CrossRefGoogle Scholar
  116. 116.
    K. Takahashi, R. Koda, K. Kakinuma, M. Uchida, Improvement of cell performance in low-Pt-loading PEFC cathode catalyst layers with Pt/Ta-SnO2 prepared by the electrosplay method. J. Electrochem. Soc. 164, F235–F242 (2017).  https://doi.org/10.1149/2.0251704jes CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Makoto Uchida
    • 1
  • Katsuyoshi Kakinuma
    • 1
  • Akihiro Iiyama
    • 1
  1. 1.Fuel Cell Nanomaterials CenterUniversity of YamanashiKofuJapan

Personalised recommendations