Stress Distribution in PEM Fuel Cells: Traditional Materials and New Trends

Chapter

Abstract

The even distribution of mechanical stress along the fuel cell is an important metric to observe in order to preserve the integrity of the system’s components. The diversity of the fuel cell’s comprising materials and dimensions, ranging from thin polymers, porous electrocatalyst and gas diffusion layers, graphite blocks, gaskets, and seals to metallic foils and plates, produces different load transmission patterns. These variations in load when combined with their particular mechanical properties may promote localized stresses deriving in accelerated degradation or, even worse, in early unsafe failure.

In transport applications, main fuel cell mechanical stressors, such as the fuel cell assembly torque, operational parameters, and vibration, can induce harsh conditions altering the lifetime of the system. The ionomeric membrane and bipolar plates are critical components in the fuel cell that may fail through mechanical means; therefore, understanding their limitations to withstand mechanical stress is important in redesigning these components to prevent unintended damage and failure.

In this chapter, we give a personal perspective account of the mechanical properties of the fuel cell’s most sensitive components, i.e., the proton exchange membrane (PEM) and the bipolar plate (BP) are examined in the scope of their current material limitations; alternative material’s substitution is discussed for improving the endurance of the integrated fuel cell device. This chapter is designed to give the fuel cell practitioner real hands-on experience on the actual engineering aspects of FC bench testing and associated testing specifications including US Department of Energy guidelines and targets.

Keywords

PEM fuel cells Mechanical stress Stress distribution Bipolar plate Polymer electrolyte membrane Alternative materials Failure 

Notes

Acknowledgments

This work is supported by the Mexican National Council of Science and Technology, CONACyT, through financial assistance to the projects No. 174689 and No. 246018.

References

  1. 1.
    M. Tutuianu, A. Marotta, H. Steven, E. Ericsson, T. Haniu, N. Ichikawa, Development of a Worldwide Worldwide Harmonized Light Duty Driving Test Cycle (WLTC). Technical report, United Nations Economic Commission for Europe (2013), https://www.unece.org/fileadmin/DAM/trans/doc/2014/wp29grpe/GRPE-68-03e.pdf. Accessed 14 May 2017
  2. 2.
    J. De La Cruz, U. Cano, T. Romero, Simulation and in situ measurement of stress distribution in a polymer electrolyte membrane fuel cell stack. J. Power Sources 329, 273–280 (2016).  https://doi.org/10.1016/j.jpowsour.2016.08.073 CrossRefGoogle Scholar
  3. 3.
    INEEL, Final report project no. 152485 SENER-CONACYT (2016)Google Scholar
  4. 4.
    T. Yoshida, K. Kojima, Toyota MIRAI fuel cell vehicle and progress toward a future. Hydrogen society. Electrochem. Soc. Interf. 24, 45–49 (2015), https://www.electrochem.org/dl/interface/sum/sum15/sum15_p45_49.pdf. Accessed 23 June 2017
  5. 5.
    M. Ahmad, Benchmarking a PEM fuel cell stack compression process. IREC 2015 (2015), http://www2.warwick.ac.uk/fac/sci/wmg/education/researchdegrees/eportfolio/wmrmbj/research/posters/mussawar_ahmad_irec_2015.ppsx. Accessed 23 June 2017
  6. 6.
    L. Shen, L. Xia, T. Han, H. Wu, S. Guo, Improvement of hardness and compression set properties of EPDM seals with the alternating multi-layered structure for PEM fuel cells. Int. J. Hydrog. Energy 48, 23164–23172 (2016).  https://doi.org/10.1016/j.ijhydene.2016.11.006 CrossRefGoogle Scholar
  7. 7.
    Y. Sung-Dae, K. Byun-Ju, S. Young-Jun, Y. Young-Gi, P. Gu-Gon, L. Won-Yong, K. Chang-Soo, K. Yong-Chai, The influence of stack clamping pressure on the performance of PEM fuel cell stack. Curr. Appl. Phys. 2, S59–S61 (2010).  https://doi.org/10.1016/j.cap.2009.11.042 CrossRefGoogle Scholar
  8. 8.
    A. Batex, S. Mukherjee, S. Hwang, S.C. Lee, O. Kwon, G.H. Choi, S. Park, Simulation and experimental analysis of the clamping pressure distribution in a PEM fuel cell stack. Int. J. Hydrog. Energy 38, 6481–6493 (2013).  https://doi.org/10.1016/j.ijhydene.2013.03.049 CrossRefGoogle Scholar
  9. 9.
    Y. Tang, M.H. Santare, A.M. Karlsson, S. Cleghorn, W.B. Johnson, Stresses in proton exchange membranes due to hygro-thermal loading. J. Fuel Cell Sci. Technol. 3(2), 119–124 (2016).  https://doi.org/10.1115/1.2173666 CrossRefGoogle Scholar
  10. 10.
    A. Evren-Firat, Mechanical Analysis of PEM Fuel Cell Stack Design (Cuvillier Verlag, 2016), https://cuvillier.de/uploads/preview/public_file/9927/9783736992573_Leseprobe.pdf. Accessed 24 June 2017
  11. 11.
    A.R. Maher, A.-B. Sadiq, A parametric study of assembly pressure, thermal expansion, and membrane swelling in PEM fuel cells. Int. J. Energy Environ. 7(2), 97–122 (2016), https://doaj.org/article/0dd6b13f2c244d62b7e82a748fd6e44e Accessed: 24 June 2017
  12. 12.
    US Department of Energy DOE, 2016 fuel cells section: 3.4 fuel cells (2016), https://www.energy.gov/sites/prod/files/2016/06/f32/fcto_myrdd_fuel_cells_0.pdf. Accessed 24 June 2017
  13. 13.
    E. Planes, L. Flandin, N. Alberola, Polymer composites bipolar plates for PEMFCs. Energy Procedia 20, 311–323 (2012).  https://doi.org/10.1016/j.egypro.2012.03.031 CrossRefGoogle Scholar
  14. 14.
    A. Iwan, M. Malinowski, G. Pasciak, Renew. Sust. Energ. Rev. 49, 954–967 (2015).  https://doi.org/10.1016/j.rser.2015.04.093 CrossRefGoogle Scholar
  15. 15.
    A. Heinzel, F. Mahlendorf, C. Jansen, Bipolar Plates (University of Duisburg–Essen, Duisburg, 2009), http://booksite.elsevier.com/brochures/ecps/PDFs/BipolarPlates.pdf. Accessed 24 June 2017
  16. 16.
    X. Zi-Yuan, H. Wang, J. Zhang, D. Wilkinson, Bipolar plates for PEM fuel cells – from materials to processing. J. New Mater. Electrochem. Syst. 8, 257–267 (2005), http://www.groupes.polymtl.ca/jnmes/modules/journal/index.php/content0390.html. Accessed 24 June 2017
  17. 17.
    K. Shahram, F. Norman, R. Bronwyn, F. Foulkes, A review of metallic bipolar plates for proton exchange membrane fuel cells: materials and fabrication methods. Adv. Mater. Sci. Eng. 2012, 1–22 (2012).  https://doi.org/10.1155/2012/828070 CrossRefGoogle Scholar
  18. 18.
    R. Taherian, A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: materials, fabrication, and material selection. J. Power Sources 265, 370–390 (2014).  https://doi.org/10.1016/j.jpowsour.2014.04.081 CrossRefGoogle Scholar
  19. 19.
    P. Beckhaus, Characterization of Composite and Metallic Bipolar Plates, ZBT GmbH (Fuel Cell Research Center) (Germany, 2011). http://www.zbt-duisburg.de/fileadmin/user_upload/01-aktuell/05-publikationen/05-vortraege/2011/hfc2011-beckhaus-tuesday-17-bpp.pdf. Accessed 1 May 2017
  20. 20.
    S. Shia, A.Z. Weber, A. Kusoglu, Structure/property relationship of Nafion XL composite membranes. J. Membr. Sci. 516, 123–134 (2016).  https://doi.org/10.1016/j.memsci.2016.06.004 CrossRefGoogle Scholar
  21. 21.
    US Department of Energy, DOE, DOE technical targets for polymer electrolyte membrane fuel cell components (2015), https://energy.gov/eere/fuelcells/doe-technical-targets-polymer-electrolyte-membrane-fuel-cell-components. Accessed 14 May 2017
  22. 22.
    A. Kusoglu, A.M. Karlsson, M.H. Santare, S. Cleghorn, W.B. Johnson, Mechanical response of fuel cell membranes subjected to a hygro-thermal cycle. J. Power Sources 161, 987–996 (2006).  https://doi.org/10.1016/j.jpowsour.2006.05.020 CrossRefGoogle Scholar
  23. 23.
    A. Kusoglu, A.M. Karlsson, M.H. Santare, S. Cleghorn, W.B. Johnson, Mechanical behavior of fuel cell membranes under humidity cycles and effect of swelling anisotropy on the fatigue stresses. J. Power Sources 170(2), 345–358 (2007).  https://doi.org/10.1016/j.jpowsour.2007.03.063 CrossRefGoogle Scholar
  24. 24.
    H. Tang, S. Peikang, S. Jiang, F. Wang, M. Pan, A degradation study of Nafion® proton exchange membrane of PEM fuel cells. J. Power Sources 170, 85–92 (2007).  https://doi.org/10.1016/j.jpowsour.2007.03.061 CrossRefGoogle Scholar
  25. 25.
    A. Kusoglu, M. Calabrese, A.Z. Weber, Effect of mechanical compression on chemical degradation of Nafion membranes. ECS Electrochem. Lett. 3(5), F33–F36 (2014).  https://doi.org/10.1149/2.008405eel CrossRefGoogle Scholar
  26. 26.
    S. Subianto, M. Pica, M. Casciola, P. Cojocaru, L. Merlo, G. Hards, D. Jones, Physical and chemical modification routes leading to improved mechanical properties of perfluorosulfonic acid membranes for PEM fuel cells. J. Power Sources 233, 216–230 (2013).  https://doi.org/10.1016/j.jpowsour.2012.12.121 CrossRefGoogle Scholar
  27. 27.
    M. Wilson, S. Zawodzinski, A. Thomas, S. Gottesfeld, Advanced Composite Polymer Electrolyte Fuel Cell Membranes. Proceedings of the First International Symposium on Proton Conducting Membrane Fuel Cells I Electrochemical Society Proceedings (1995), http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.465.3459&rep=rep1&type=pdf. Accessed 1 May 2017
  28. 28.
    Y. Kai, Y. Kitayama, M. Omiya, T. Uchiyama, M. Kato, Crack formation on membrane electrode assembly (Mea) under static and cyclic loadings. in ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology Collocated with the ASME 2012 6th International Conference on Energy Sustainability (2012), FUEL CELL 2012, pp. 143–151. https://doi.org/ https://doi.org/10.1115/FuelCell2012-91164
  29. 29.
    F. Bauer, S. Denneler, M. Willert-Porada, Influence of temperature and humidity on the mechanical properties of Nafion® 117 polymer electrolyte membrane. J. Polym. Sci. B Polym. Phys. 43, 786–795 (2005).  https://doi.org/10.1002/polb.20367 CrossRefGoogle Scholar
  30. 30.
    M. Laporta, M. Pegoraro, L. Zanderighi, Perfluorosulfonated membrane (Nafion): FT-IR study of the state of water with increasing humidity. Phys. Chem. Chem. Phys. 1, 4619–4628 (1999).  https://doi.org/10.1039/A904460D CrossRefGoogle Scholar
  31. 31.
    P.W. Majsztrik, A.B. Bocarsly, J.B. Benziger, Viscoelastic response of Nafion. Effects of temperature and hydration on tensile creep. Macromolecules 41, 9849–9862 (2008).  https://doi.org/10.1021/ma801811m CrossRefGoogle Scholar
  32. 32.
    Q. Zhao, J. Benziger, Mechanical properties of perfluoro sulfonated acids: the role of temperature and solute activity. J. Polym. Sci. Part B Polym. Phys. 51, 915–925 (2013).  https://doi.org/10.1002/polb.23284 CrossRefGoogle Scholar
  33. 33.
    S. Shi, G. Chen, Z. Wang, X. Chen, Mechanical properties of Nafion 212 proton exchange membrane subjected to hygrothermal aging. J. Power Sources 238, 318–323 (2013).  https://doi.org/10.1016/j.jpowsour.2013.03.042 CrossRefGoogle Scholar
  34. 34.
    Y. Singh, F. Orfino, M. Dutta, E. Kjeang, 3D visualization of membrane failures in fuel cells. J. Power Sources 345, 1–11 (2017).  https://doi.org/10.1016/j.jpowsour.2017.01.129 CrossRefGoogle Scholar
  35. 35.
    Y.H. Liu, B.I. Yi, Z.G. Shao, D.M. Xing, H.M. Zhang, Carbon nanotubes reinforced Nafion composite membrane for fuel cell applications. Electrochem. Solid-State Lett. 9, A356–A359 (2006).  https://doi.org/10.1149/1.2203230 CrossRefGoogle Scholar
  36. 36.
    W. Ma, C. Zhao, J. Yang, J. Ni, N. Zhang, H. Lin, J. Wang, G. Zhang, Q. Li, H. Na, Crosslinked aromatic cationic polymer electrolytes with enhanced stability for high-temperature fuel cell applications. Energy Environ. 5, 7617–7625 (2012).  https://doi.org/10.1039/C2EE21521G CrossRefGoogle Scholar
  37. 37.
    S. Lai, J. Park, S. Cho, M. Tsai, H. Lim, K. Chen, Mechanical property enhancement of ultra-thin PBI membrane by electron beam irradiation for PEM fuel cell. Int. J. Hydrog. Energy 41, 9556–9562 (2016).  https://doi.org/10.1016/j.ijhydene.2016.04.111 CrossRefGoogle Scholar
  38. 38.
    D.E. Curtin, R.E. Lousenberg, T.J. Henry, P. Tangeman, M.E. Tisack, Advanced materials for improved PEMFC performance and life. J. Power Sources 131, 41–48 (2004).  https://doi.org/10.1016/j.jpowsour.2004.01.023 CrossRefGoogle Scholar
  39. 39.
    R. Pandey, G. Shukla, M. Manohar, V. Shahi, Graphene oxide based nanohybrid proton exchange membranes for fuel cell applications: an overview. Adv. Colloid Interf. Sci. 240, 15–30 (2017).  https://doi.org/10.1016/j.cis.2016.12.003 CrossRefGoogle Scholar
  40. 40.
    Y. Tanaka, TOYOTA’s next generation vehicle strategy and Fuel Cell Vehicle MIRAI’s Development, Product Planning Toyota Motor Corporation (2015), http://www.taia.or.th/home/media/file/49923981428457602.pdf. Accessed 23 June 2017

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Javier de la Cruz
    • 1
  • Tatiana Romero
    • 2
  • Ulises Cano
    • 2
  1. 1.CONACYT-INEELCuernavacaMexico
  2. 2.INEELCuernavacaMexico

Personalised recommendations