Advertisement

Solid-State Materials for Hydrogen Storage

  • Rolando Pedicini
  • Irene Gatto
  • Enza Passalacqua
Chapter

Abstract

Hydrogen (H2) is a promising replacement energy carrier and storage molecular due to its high energy density by weight. For the constraint of size and weight in vehicles, the onboard hydrogen storage system has to be small and lightweight. Therefore, a lot of research is devoted to finding an efficient method of hydrogen storage based on both mechanical compression and sorption on solid-state materials. An overview of the current research trend and perspectives on materials-based hydrogen storage including both physical and chemical storage is provided in the present paper. Part of this chapter was dedicated to recent results on two innovative materials: hybrid materials based on manganese oxide anchored to a polymeric matrix and natural volcanic powders. A prototype H2 tank, filled with the developed hybrid material, was realized and integrated into a polymer electrolyte membrane (PEM) single fuel cell (FC) demonstrating the material capability to coupling with the FC.

Keywords

H2 storage Physisorption and chemical sorption Mn oxide anchored to a polymer H2 tank prototype 

Notes

Acknowledgments

The hybrid material activity was developed within the Research Project AdP CNR-MSE and financing from the Research Fund for the Electrical System, with theme: International Project “Nuclear, Hydrogen, Fuel Cells” e Activity 2.6: Polymeric materials for hydrogen storage.

The authors are grateful to Dr. Ausonio Tuissi (CNR-ICMATE) for his collaboration in TiCr development and Dr. Lucia Miraglia (INGV) for his support in lava material characterizations.

References

  1. 1.
    S. Borowitz, Farewell Fossil Fuels, Springer Science book ISBN 978-0-306 45781-4, (1999)Google Scholar
  2. 2.
  3. 3.
    S. Iijima, Nature 354, 56 (1991); A.C. Dillon, K.M. Jones, T.A. Bekke-dahl, H. Kiang, D.S. Bethune, M.J. Heben, Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377–379 (1997)Google Scholar
  4. 4.
    E. Poirier, R. Chahine, T.K. Bose, Int. J. Hydrog. Energy 26, 831 (2001)CrossRefGoogle Scholar
  5. 5.
    H. Wang, Q. Gao, J. Hu, High hydrogen storage capacity of porous carbons prepared by using activated carbon. J. Am. Chem. Soc. 131, 7016–7022 (2009)CrossRefGoogle Scholar
  6. 6.
    Z. Wang, L. Sun, F. Xu, H. Zhou, X. Peng, D. Sun, J. Wang, Y. Du, Nitrogen-doped porous carbons with high performance for hydrogen storage. Int. J. Hydrogen Energy 41, 8489–8497 (2016)CrossRefGoogle Scholar
  7. 7.
    H. Jung, K.T. Park, M.N. Gueye, S.H. So, C.R. Park, Bio-inspired graphene foam decorated with Pt nanoparticles for hydrogen storage at room temperature. Int. J. Hydrogen Energy 41, 5019–5027 (2016)CrossRefGoogle Scholar
  8. 8.
    N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’Keeffe, O.M. Yaghi, Hydrogen storage in microporous metal-organic frameworks. Science 300, 1127–1129 (2003)CrossRefGoogle Scholar
  9. 9.
    K. Koh, A.G. Wong-Foy, A.J. Matzger, A porous coordination copolymer with over 5000 m2/g BET surface area. J. Am. Chem. Soc. 131, 4184–4185 (2009)CrossRefGoogle Scholar
  10. 10.
    N.M. Musyoka, J. Ren, P. Annamalai, H.W. Langmi, B.C. North, M. Mathe, D. Bessarabov, Synthesis of a hybrid MIL-101(Cr)/ZTC composite for hydrogen storage applications. Res. Chem. Intermed. 42, 5299–5307 (2016)CrossRefGoogle Scholar
  11. 11.
    D. Ramimoghadam, E. MacA Gray, C.J. Webb, Review of polymers of intrinsic microporosity for hydrogen storage applications. Int. J. Hydrogen Energy 41, 16944–16965 (2016)CrossRefGoogle Scholar
  12. 12.
    O. Elishav, D.R. Lewin, G.E. Shter, G.S. Grader, The nitrogen economy: economic conomic feasibility analysis of nitrogen-based fuels as energy carriers. Appl. Energy 185, 183–188 (2017).  https://doi.org/10.1016/j.apenergy.2016.10.088 CrossRefGoogle Scholar
  13. 13.
    P.L. Bramwell, S. Lentink, P. Ngene, P.E. De Jongh, Effect of pore confinement of LiNH2 on ammonia decomposition catalysis and the storage of hydrogen and ammonia. J. Phys. Chem. C 120(48), 27212–27220 (2016).  https://doi.org/10.1021/acs.jpcc.6b10688 CrossRefGoogle Scholar
  14. 14.
    Y.Z. Ge, W.Y. Ye, Z.H. Shah, X.J. Lin, R.W. Lu, S.F. Zhang, PtNi/NiO clusters coated by hollow silica: novel design for highly efficient hydrogen production from ammonia-borane. ACS Appl. Mater. Interfaces 9(4), 3749–3756 (2017).  https://doi.org/10.1021/acsami.6b15020 CrossRefGoogle Scholar
  15. 15.
    M. Baricco, M. Bang, M. Fichtner, B. Hauback, M. Linder, C. Luetto, P. Moretto, M. Sgroi, SSH2S: Hydrogen storage in complex hydrides for an auxiliary power unit based on high-temperature proton exchange membrane fuel cells. J. Power Sources 342, 853–860 (2017).  https://doi.org/10.1016/j.jpowsour.2016.12.107 CrossRefGoogle Scholar
  16. 16.
    X. Zhang, R.Y. Wu, Z.Y. Wang, M.X. Gao, H.G. Pan, Y.F. Liu, Preparation and catalytic activity of a novel nanocrystalline ZrO2@C composite for hydrogen storage in NaAlH4. Chem-Asian J 11(24), 3541–3549 (2016).  https://doi.org/10.1002/asia.201601204 CrossRefGoogle Scholar
  17. 17.
    G. Zou, B. Liu, J. Guo, Q. Zhang, C. Fernandez, Q. Peng, Synthesis of nanoflower-shaped MXene derivative with unexpected catalytic activity for dehydrogenation of sodium Alanates. ACS Appl. Mater. Interfaces 9(8), 7611–7618 (2017).  https://doi.org/10.1021/acsami.6b13973 CrossRefGoogle Scholar
  18. 18.
    J.R. Ares, J. Zhang, T. Charpentier, F. Cuevas, M. Latroche, Asymmetric reaction paths and hydrogen sorption mechanism in mechanochemically synthesized potassium alanate (KAlH4). J. Phys. Chem. C 120(38), 21299–21308 (2016).  https://doi.org/10.1021/acs.jpcc.6b07589 CrossRefGoogle Scholar
  19. 19.
    Y.F. Ma, Y. Li, T. Liu, X. Zhao, L. Zhang, S.M. Han, Y.J. Wang, Enhanced hydrogen storage properties of LiBH4 generated using a porous Li3BO3 catalyst. J. Alloys Compd. 689, 187–191 (2016).  https://doi.org/10.1016/j.jallcom.2016.07.313 CrossRefGoogle Scholar
  20. 20.
    S.C. Li, F.C. Wang, The development of a sodium borohydride hydrogen generation system for proton exchange membrane fuel cell. Int. J. Hydrog. Energy 41(4), 3038–3051 (2016).  https://doi.org/10.1016/j.ijhydene.2015.12.019 CrossRefGoogle Scholar
  21. 21.
    D. Lu, G.F. Yu, Y. Li, M.H. Chen, Y.X. Pan, L.Q. Zhou, K.Z. Yang, X. Xiong, P. Wu, Q.H. Xia, RuCo NPs supported on MIL-96(Al) as highly active catalysts for the hydrolysis of ammonia borane. J. Alloys Compd. 694, 662–671 (2017).  https://doi.org/10.1016/j.jallcom.2016.10.055 CrossRefGoogle Scholar
  22. 22.
    L.M. Zhou, J. Meng, P. Li, Z.L. Tao, L.Q. Mai, J. Chen, Ultrasmall cobalt nanoparticles supported on nitrogen-doped porous carbon nanowires for hydrogen evolution from ammonia borane. Mater. Horiz. 4(2), 268–273 (2017).  https://doi.org/10.1039/c6mh00534a CrossRefGoogle Scholar
  23. 23.
    M. Rueda, L.M. Sanz-Moral, J.S.B. Jose, A. Martin, Improvement of the kinetics of hydrogen release from ammonia borane confined in silica aerogel. Microporous Mesoporous Mater. 237, 189–200 (2017).  https://doi.org/10.1016/j.micromeso.2016.09.030 CrossRefGoogle Scholar
  24. 24.
    Z.J. Zhang, Y.Q. Wang, X.S. Chen, Z.H. Lu, Facile synthesis of NiPt-CeO2 nanocomposite as an efficient catalyst for hydrogen generation from hydrazine borane. J. Power Sources 291, 14–19 (2015).  https://doi.org/10.1016/j.jpowsour.2015.05.012 CrossRefGoogle Scholar
  25. 25.
    R. Moury, K. Robeyns, Y. Filinchuk, P. Miele, U.B. Demirci, In situ thermodiffraction to monitor synthesis and thermolysis of hydrazine borane-based materials. J. Alloys Compd. 659, 210–216 (2016).  https://doi.org/10.1016/j.jallcom.2015.11.052 CrossRefGoogle Scholar
  26. 26.
    P. Chen, E. Akiba, S. Orimo, A. Zuettel, L. Schlapbach, Hydrogen storage by reversible metal hydride formation in the Book: Hydrogen Science and Engineering: Materials, Processes, Systems and Technology (2016)Google Scholar
  27. 27.
    G. Friedlmeier, M. Groll, Experimental analysis and modeling of the hydriding kinetics of Ni-doped and pure Mg. J. Alloy Compd, Elsevier-Amsterdam, 253–254, 550–555 (1997)CrossRefGoogle Scholar
  28. 28.
    H. Wang, H.J. Lin, W.T. Cai, L.Z. Ouyang, M. Zhu, Tuning kinetics and thermodynamics of hydrogen storage in light metal element based systems – a review of recent progress. J. Alloys Compd. 658, 280–300 (2016)CrossRefGoogle Scholar
  29. 29.
    M. Ron, The normalized pressure dependence method for the evaluation of kinetic rates of metal hydride formation/decomposition. J. Alloy Compd. 283, 178–191 (1999)CrossRefGoogle Scholar
  30. 30.
    C.S. Wang, X.H. Wang, Y.Q. Lei, C.P. Chen, Q.D. Wang, The hydriding kinetics of MlNi5 – I. Development of the model. Int. J. Hydrogen Energy 21, 471–478 (1996)CrossRefGoogle Scholar
  31. 31.
    J. Yang, A. Sudik, C. Wolverton, D.J. Siegel, High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chem. Soc. Rev. 39, 656–675 (2010)CrossRefGoogle Scholar
  32. 32.
    K. Sanjay, H. Miyaoka, T. Ichikawa, G.K. Dey, Y. Kojima, Micro-alloyed Mg2Ni for better performance as negative electrode of Ni-MH battery and hydrogen storage. Int. J. Hydrog. Energy 42, 5220–5226 (2017)CrossRefGoogle Scholar
  33. 33.
    R. Pedicini, I. Gatto, M. Coduri, C.A. Biffi, A. Tuissi, Preliminary investigation on metal alloy based on Cr/Ti, HYPOTHESIS XII Conference, Syracuse, 28–30 June 2017Google Scholar
  34. 34.
    H. Imoto, M. Sasaki, T. Saito, Y. Sasaki, Bull. Chem. Soc. Jpn. 53(6), 1584–1587 (1980)CrossRefGoogle Scholar
  35. 35.
    W.R. Schmidt, Activity report of the United Technologies Research Center for the Polymer Dispersed Metal Hydride program, DOE contract DEFC36-00G010535Google Scholar
  36. 36.
    Z. Liu, Z. Lei, Cyclic hydrogen storage properties of Mg milled with nickel nano-powders and MnO2. J. Alloys Compd. 443, 121–124 (2007)CrossRefGoogle Scholar
  37. 37.
    Y. Suttisawat, P. Rangsunvigit, B. Kitiyanan, S. Kulprathipanja, Effect of co-dopants on hydrogen desorption/absorption of HfCl4- and TiO2- doped NaAlH4. Int. J. Hydrog. Energy 33, 6195–6200 (2008)CrossRefGoogle Scholar
  38. 38.
    R. Pedicini, A. Saccà, A. Carbone, E. Passalacqua, Hydrogen storage based on the polymeric material. Int. J. Hydrog. Energy 36, 9062–9068 (2011)CrossRefGoogle Scholar
  39. 39.
    G. Zhu, H. Li, L. Deng, Z.H. Liu, Low-temperature synthesis of δ-MnO2 with large surface area and its capacitance. Mater. Lett. 64, 1763–1765 (2010)CrossRefGoogle Scholar
  40. 40.
    A.D. Zdetsis, M.M. Sigalas, E.N. Koukarasad, Phys. Chem. Chem. Phys. 16, 14172–14182 (2014)CrossRefGoogle Scholar
  41. 41.
    R. Pedicini, F. Matera, G. Giacoppo, I. Gatto, E. Passalacqua, Int. J. Hydrogen Energy 40, 17388–17393 (2015)CrossRefGoogle Scholar
  42. 42.
    R. Pedicini, L. Miraglia, A. Carbone, E. Passalacqua, I. Gatto, Interesting hydrogen storage behavior of volcanic powders, The III Energy & Materials Research Conference – EMR 2017 Lisbon, 5–7 Apr 2017Google Scholar
  43. 43.
    L. Miraglia, Tech. Report INGV 261, 5–24 (2013)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rolando Pedicini
    • 1
    • 2
  • Irene Gatto
    • 1
  • Enza Passalacqua
    • 1
  1. 1.Institute for Advanced Energy TechnologiesMessinaItaly
  2. 2.Dipartimento di FisicaUniversità della CalabriaArcavacata di RendeItaly

Personalised recommendations