Skip to main content

MRI and Ultrasound Imaging of Nanoparticles for Medical Diagnosis

  • Chapter
  • First Online:
Nanotechnology Characterization Tools for Biosensing and Medical Diagnosis

Abstract

Magnetic resonance imaging (MRI) and ultrasound (US) are two prominent medical imaging modalities. They are extensively and routinely used in various medical fields, such as cardiology, embryology, neurology, and oncology. In this chapter we describe the application of nanoparticles for MRI and US image enhancement. Moreover, the utilization of nano-scaled compounds for multimodal MRI-US imaging, allowing further increase of diagnosis certainty, is depicted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolbarst AB, Hendee WR (2006) Evolving and experimental technologies in medical imaging. Radiology 238(1):16–39

    Article  Google Scholar 

  2. Smith-Bindman R, Miglioretti DL, Johnson E, Lee C et al (2012) Use of diagnostic imaging studies and associated radiation exposure for patients enrolled in large integrated health care systems, 1996–2010. JAMA 307(22):2400–2409

    Article  CAS  Google Scholar 

  3. Beckett KR, Moriarity AK, Langer JM (2015) Safe use of contrast media: what the radiologist needs to know. Radiographics 35(6):1738–1750

    Article  Google Scholar 

  4. Vandsburger MH, Epstein FH (2011) Emerging MRI methods in translational cardiovascular research. J Cardiovasc Transl Res 4(4):477–492

    Article  Google Scholar 

  5. Fidler JL, Guimaraes L, Einstein DM (2009) MR imaging of the small bowel 1. Radiographics 29(6):1811–1825

    Article  Google Scholar 

  6. Sun MR, Ngo L, Genega EM, Atkins MB et al (2009) Renal cell carcinoma: dynamic contrast-enhanced MR imaging for differentiation of tumor subtypes – correlation with pathologic findings 1. Radiology 250(3):793–802

    Article  Google Scholar 

  7. Farkas J, Christian P, Urrea JAG, Roos N et al (2010) Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat Toxicol 96(1):44–52

    Article  CAS  Google Scholar 

  8. Bihari P, Vippola M, Schultes S, Praetner M et al (2008) Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Part Fibre Toxicol 5(1):14

    Article  CAS  Google Scholar 

  9. Mohanraj V, Chen Y (2006) Nanoparticles-a review. Trop J Pharm Res 5(1):561–573

    Google Scholar 

  10. Moreno-Manas M, Pleixats R (2003) Formation of carbon– carbon bonds under catalysis by transition-metal nanoparticles. Acc Chem Res 36(8):638–643

    Article  CAS  Google Scholar 

  11. Kayser O, Lemke A, Hernandez-Trejo N (2005) The impact of nanobiotechnology on the development of new drug delivery systems. Curr Pharm Biotechnol 6(1):3–5

    Article  CAS  Google Scholar 

  12. Wang AZ, Langer R, Farokhzad OC (2012) Nanoparticle delivery of cancer drugs. Annu Rev Med 63:185–198

    Article  CAS  Google Scholar 

  13. Hobbs SK, Monsky WL, Yuan F, Roberts WG et al (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci 95(8):4607–4612

    Article  CAS  Google Scholar 

  14. Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63(3):136–151

    Article  CAS  Google Scholar 

  15. Li S-D, Huang L (2010) Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting. J Control Release 145(3):178

    Article  CAS  Google Scholar 

  16. Moore A, Marecos E, Bogdanov A Jr, Weissleder R (2000) Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model 1. Radiology 214(2):568–574

    Article  CAS  Google Scholar 

  17. Nune SK, Gunda P, Thallapally PK, Lin Y-Y et al (2009) Nanoparticles for biomedical imaging. Expert Opin Drug Deliv 6(11):1175–1194

    Article  CAS  Google Scholar 

  18. Li L, Gao F, Jiang W, Wu X et al (2016) Folic acid-conjugated superparamagnetic iron oxide nanoparticles for tumor-targeting MR imaging. Drug Deliv 23(5):1726–1733

    CAS  Google Scholar 

  19. Grenha A, Gomes ME, Rodrigues M, Santo VE et al (2010) Development of new chitosan/carrageenan nanoparticles for drug delivery applications. J Biomed Mater Res A 92(4):1265–1272

    Google Scholar 

  20. Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22(1):47–52

    Article  CAS  Google Scholar 

  21. Zhou L, Gu Z, Liu X, Yin W et al (2012) Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging. J Mater Chem 22(3):966–974

    Article  CAS  Google Scholar 

  22. Zhao Z, Zhou Z, Bao J, Wang Z et al (2013) Octapod iron oxide nanoparticles as high-performance T2 contrast agents for magnetic resonance imaging. Nat Commun 4:2266

    Article  CAS  Google Scholar 

  23. Baetke SC, Lammers T, Kiessling F (2015) Applications of nanoparticles for diagnosis and therapy of cancer. Br J Radiol 88(1054):20150207

    Article  CAS  Google Scholar 

  24. Popovtzer R, Agrawal A, Kotov NA, Popovtzer A et al (2008) Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett 8(12):4593–4596

    Article  CAS  Google Scholar 

  25. Yin T, Wang P, Zheng R, Zheng B et al (2012) Nanobubbles for enhanced ultrasound imaging of tumors. Int J Nanomedicine 7(2):895–904

    CAS  Google Scholar 

  26. Liu Y, Welch MJ (2012) Nanoparticles labeled with positron emitting nuclides: advantages, methods, and applications. Bioconjug Chem 23(4):671–682

    Article  CAS  Google Scholar 

  27. Polyák A, Hajdu I, Bodnár M, Trencsényi G et al (2013) 99m Tc-labelled nanosystem as tumour imaging agent for SPECT and SPECT/CT modalities. Int J Pharm 449(1):10–17

    Article  CAS  Google Scholar 

  28. Morana G, Salviato E, Guarise A (2007) Contrast agents for hepatic MRI. Cancer Imaging 7(Spec No A):S24–S27

    Article  Google Scholar 

  29. Louie A (2010) Multimodality imaging probes: design and challenges. Chem Rev (Washington, DC, United States) 110(5):3146–3195

    Article  CAS  Google Scholar 

  30. Deshpande N, Needles A, Willmann JK (2010) Molecular ultrasound imaging: current status and future directions. Clin Radiol 65(7):567–581

    Article  CAS  Google Scholar 

  31. Gao Z, Ma T, Zhao E, Docter D et al (2016) Small is smarter: nano MRI contrast agents–advantages and recent achievements. Small 12(5):556–576

    Article  CAS  Google Scholar 

  32. Lee D-E, Koo H, Sun I-C, Ryu JH et al (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41(7):2656–2672

    Article  CAS  Google Scholar 

  33. Albrecht T, Blomley M, Bolondi L, Claudon M et al (2004) Guidelines for the use of contrast agents in ultrasound. January 2004. Ultraschall Med 25(04):249–256

    Article  CAS  Google Scholar 

  34. Chang PH, Shun K, Wu S-J, Levene HB (1995) Second harmonic imaging and harmonic Doppler measurements with Albunex. IEEE Trans Ultrason Ferroelectr Freq Control 42(6):1020–1027

    Article  Google Scholar 

  35. Calliada F, Campani R, Bottinelli O, Bozzini A et al (1998) Ultrasound contrast agents: basic principles. Eur J Radiol 27:S157–S160

    Article  Google Scholar 

  36. Blomley MJ, Cooke JC, Unger EC, Monaghan MJ et al (2001) Microbubble contrast agents: a new era in ultrasound. Br Med J 322(7296):1222

    Article  CAS  Google Scholar 

  37. Potdevin T, Fowlkes J, Moskalik A, Carson P (2004) Analysis of refill curve shape in ultrasound contrast agent studies. Med Phys 31(3):623–632

    Article  CAS  Google Scholar 

  38. Claudon M, Dietrich CF, Choi BI, Cosgrove DO et al (2013) Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) in the liver–update 2012. Ultraschall Med 34(01):11–29

    CAS  Google Scholar 

  39. Wang C-H, Huang Y-F, Yeh C-K (2011) Aptamer-conjugated nanobubbles for targeted ultrasound molecular imaging. Langmuir 27(11):6971–6976

    Article  CAS  Google Scholar 

  40. Fan X, Wang L, Guo Y, Tong H et al (2013) Experimental investigation of the penetration of ultrasound nanobubbles in a gastric cancer xenograft. Nanotechnology 24(32):325102

    Article  CAS  Google Scholar 

  41. Cai WB, Yang HL, Zhang J, Yin JK et al (2015) The optimized fabrication of nanobubbles as ultrasound contrast agents for tumor imaging. Sci Rep 5:13725

    Article  Google Scholar 

  42. Yang H, Cai W, Xu L, Lv X et al (2015) Nanobubble–affibody: novel ultrasound contrast agents for targeted molecular ultrasound imaging of tumor. Biomaterials 37:279–288

    Article  CAS  Google Scholar 

  43. Tong H-P, Wang L-F, Guo Y-L, Li L et al (2013) Preparation of protamine cationic nanobubbles and experimental study of their physical properties and in vivo contrast enhancement. Ultrasound Med Biol 39(11):2147–2157

    Article  Google Scholar 

  44. Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3(3):1377–1397

    Article  CAS  Google Scholar 

  45. Néstor M-M, Kei N-PE, Guadalupe N-AM, Elisa M-ES et al (2011) Preparation and in vitro evaluation of poly (D, L-lactide-co-glycolide) air-filled nanocapsules as a contrast agent for ultrasound imaging. Ultrasonics 51(7):839–845

    Article  CAS  Google Scholar 

  46. Zhang X, Zheng Y, Wang Z, Huang S et al (2014) Methotrexate-loaded PLGA nanobubbles for ultrasound imaging and synergistic targeted therapy of residual tumor during HIFU ablation. Biomaterials 35(19):5148–5161

    Article  CAS  Google Scholar 

  47. Krupka TM, Solorio L, Wilson RE, Wu H et al (2009) Formulation and characterization of echogenic lipid– pluronic nanobubbles. Mol Pharm 7(1):49–59

    Article  CAS  Google Scholar 

  48. Wu H, Rognin NG, Krupka TM, Solorio L et al (2013) Acoustic characterization and pharmacokinetic analyses of new nanobubble ultrasound contrast agents. Ultrasound Med Biol 39(11):2137–2146

    Article  Google Scholar 

  49. Shapiro MG, Goodwill PW, Neogy A, Yin M et al (2014) Biogenic gas nanostructures as ultrasonic molecular reporters. Nat Nanotechnol 9(4):311–316

    Article  CAS  Google Scholar 

  50. Sheeran PS, Wong VP, Luois S, McFarland RJ et al (2011) Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging. Ultrasound Med Biol 37(9):1518–1530

    Article  Google Scholar 

  51. Díaz-López R, Tsapis N, Santin M, Bridal SL et al (2010) The performance of PEGylated nanocapsules of perfluorooctyl bromide as an ultrasound contrast agent. Biomaterials 31(7):1723–1731

    Article  CAS  Google Scholar 

  52. Peyman SA, McLaughlan JR, Abou-Saleh RH, Marston G et al (2016) On-chip preparation of nanoscale contrast agents towards high-resolution ultrasound imaging. Lab Chip 16(4):679–687

    Article  CAS  Google Scholar 

  53. Liu J, Shang T, Wang F, Cao Y et al (2017) Low-intensity focused ultrasound (LIFU)-induced acoustic droplet vaporization in phase-transition perfluoropentane nanodroplets modified by folate for ultrasound molecular imaging. Int J Nanomedicine 12:911

    Article  CAS  Google Scholar 

  54. Nguyen AT, Wrenn SP (2014) Acoustically active liposome-nanobubble complexes for enhanced ultrasonic imaging and ultrasound-triggered drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6(3):316–325

    Article  CAS  Google Scholar 

  55. Raymond JL, Luan Y, Peng T, Huang S-L et al (2016) Loss of gas from echogenic liposomes exposed to pulsed ultrasound. Phys Med Biol 61(23):8321

    Article  Google Scholar 

  56. Liang H, Blomley M (2003) The role of ultrasound in molecular imaging. Br J Radiol 76:S140

    Article  CAS  Google Scholar 

  57. Kopechek JA, Haworth KJ, Raymond JL, Douglas Mast T et al (2011) Acoustic characterization of echogenic liposomes: frequency-dependent attenuation and backscatter. J Acoust Soc Am 130(5):3472–3481

    Article  CAS  Google Scholar 

  58. Radhakrishnan K, Haworth KJ, Huang S-L, Klegerman ME et al (2012) Stability of echogenic liposomes as a blood pool ultrasound contrast agent in a physiologic flow phantom. Ultrasound Med Biol 38(11):1970–1981

    Article  Google Scholar 

  59. Kim H, Moody MR, Laing ST, Kee PH et al (2010) In vivo volumetric intravascular ultrasound visualization of early/inflammatory arterial atheroma using targeted echogenic immunoliposomes. Investig Radiol 45(10):685

    Article  CAS  Google Scholar 

  60. Laing ST, Moody M, Smulevitz B, Kim H et al (2011) Ultrasound-enhanced thrombolytic effect of tissue plasminogen activator–loaded echogenic liposomes in an in vivo rabbit aorta thrombus model – brief report. Arterioscler Thromb Vasc Biol 31(6):1357–1359

    Article  CAS  Google Scholar 

  61. Kang E, Min HS, Lee J, Han MH et al (2010) Nanobubbles from gas-generating polymeric nanoparticles: ultrasound imaging of living subjects. Angew Chem Int Ed 49(3):524–528

    Article  CAS  Google Scholar 

  62. Olson ES, Orozco J, Wu Z, Malone CD et al (2013) Toward in vivo detection of hydrogen peroxide with ultrasound molecular imaging. Biomaterials 34(35):8918–8924

    Article  CAS  Google Scholar 

  63. Kang C, Cho W, Park M, Kim J et al (2016) H2O2-triggered bubble generating antioxidant polymeric nanoparticles as ischemia/reperfusion targeted nanotheranostics. Biomaterials 85:195–203

    Article  CAS  Google Scholar 

  64. Kim M, Lee JH, Kim SE, Kang SS et al (2016) Nanosized ultrasound enhanced-contrast agent for in vivo tumor imaging via intravenous injection. ACS Appl Mater Interfaces 8(13):8409–8418

    Article  CAS  Google Scholar 

  65. Liu J, Levine AL, Mattoon JS, Yamaguchi M et al (2006) Nanoparticles as image enhancing agents for ultrasonography. Phys Med Biol 51(9):2179

    Article  CAS  Google Scholar 

  66. Liu J, Li J, Rosol TJ, Pan X et al (2007) Biodegradable nanoparticles for targeted ultrasound imaging of breast cancer cells in vitro. Phys Med Biol 52(16):4739

    Article  CAS  Google Scholar 

  67. Ji Y, Li X-T, Chen G-Q (2008) Interactions between a poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) terpolyester and human keratinocytes. Biomaterials 29(28):3807–3814

    Article  CAS  Google Scholar 

  68. Liberman A, Martinez HP, Ta CN, Barback CV et al (2012) Hollow silica and silica-boron nano/microparticles for contrast-enhanced ultrasound to detect small tumors. Biomaterials 33(20):5124–5129

    Article  CAS  Google Scholar 

  69. Liberman A, Wu Z, Barback CV, Viveros R et al (2013) Color doppler ultrasound and gamma imaging of intratumorally injected 500 nm iron–silica nanoshells. ACS Nano 7(7):6367–6377

    Article  CAS  Google Scholar 

  70. Foroutan F, Jokerst JV, Gambhir SS, Vermesh O et al (2015) Sol–gel synthesis and electrospraying of biodegradable (P2O5) 55–(CaO) 30–(Na2O) 15 glass nanospheres as a transient contrast agent for ultrasound stem cell imaging. ACS Nano 9(2):1868–1877

    Article  CAS  Google Scholar 

  71. Delogu LG, Vidili G, Venturelli E, Ménard-Moyon C et al (2012) Functionalized multiwalled carbon nanotubes as ultrasound contrast agents. Proc Natl Acad Sci 109(41):16612–16617

    Article  CAS  Google Scholar 

  72. Lee GH, Chang Y (2015) Magnetic properties, water proton relaxivities, and in-vivo MR images of paramagnetic nanoparticles. J Korean Phys Soc 67(1):44–51

    Article  CAS  Google Scholar 

  73. Weissleder R (1994) Liver MR imaging with iron oxides: toward consensus and clinical practice. Radiology 193(3):593–595

    Article  CAS  Google Scholar 

  74. Raymond KN, Pierre VC (2005) Next generation, high relaxivity gadolinium MRI agents. Bioconjug Chem 16(1):3–8

    Article  CAS  Google Scholar 

  75. Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE (2007) Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis 1. Radiology 242(3):647–649

    Article  Google Scholar 

  76. Pan D, Caruthers SD, Senpan A, Schmieder AH et al (2011) Revisiting an old friend: manganese-based MRI contrast agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3(2):162–173

    Article  CAS  Google Scholar 

  77. Amsalem Y, Mardor Y, Feinberg MS, Landa N et al (2007) Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation 116(Suppl 11):I-38–I-45

    CAS  Google Scholar 

  78. Bar-Shir A, Avram L, Yariv-Shoushan S, Anaby D et al (2014) Alginate-coated magnetic nanoparticles for noninvasive MRI of extracellular calcium. NMR Biomed 27(7):774–783

    Article  CAS  Google Scholar 

  79. Temme S, Grapentin C, Quast C, Jacoby C et al (2015) Non-invasive imaging of early venous thrombosis by 19F MRI using targeted perfluorocarbon nanoemulsions. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.114.010962

  80. Lesniak WG, Oskolkov N, Song X, Lal B et al (2016) Salicylic acid conjugated dendrimers are a tunable, high performance CEST MRI NanoPlatform. Nano Lett 16(4):2248–2253

    Article  CAS  Google Scholar 

  81. Faucher L, Tremblay Ml, Lagueux J, Gossuin Y et al (2012) Rapid synthesis of PEGylated ultrasmall gadolinium oxide nanoparticles for cell labeling and tracking with MRI. ACS Appl Mater Interfaces 4(9):4506–4515

    Article  CAS  Google Scholar 

  82. Fang J, Chandrasekharan P, Liu X-L, Yang Y et al (2014) Manipulating the surface coating of ultra-small Gd2O3 nanoparticles for improved T 1-weighted MR imaging. Biomaterials 35(5):1636–1642

    Article  CAS  Google Scholar 

  83. Bertini I, Bianchini F, Calorini L, Colagrande S et al (2004) Persistent contrast enhancement by sterically stabilized paramagnetic liposomes in murine melanoma. Magn Reson Med 52(3):669–672

    Article  CAS  Google Scholar 

  84. Chen H, Wang GD, Tang W, Todd T et al (2014) Gd-encapsulated carbonaceous dots with efficient renal clearance for magnetic resonance imaging. Adv Mater (Weinheim, Germany) 26(39):6761–6766

    Article  CAS  Google Scholar 

  85. Perera VS, Chen G, Cai Q, Huang SD (2016) Nanoparticles of gadolinium-incorporated Prussian blue with PEG coating as an effective oral MRI contrast agent for gastrointestinal tract imaging. Analyst 141(6):2016

    Article  CAS  Google Scholar 

  86. Na HB, Lee JH, An K, Park YI et al (2007) Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew Chem 119(28):5493–5497

    Article  Google Scholar 

  87. Kim T, Momin E, Choi J, Yuan K et al (2011) Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T 1 contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells. J Am Chem Soc 133(9):2955–2961

    Article  CAS  Google Scholar 

  88. An K, Na HB, Park YI, Choi SH et al (2015) Hollow MnOxPy and Pt/MnOxPy yolk/shell nanoparticles as a T 1 MRI contrast agent. J Colloid Interface Sci 439:134–138

    Article  CAS  Google Scholar 

  89. Kanakia S, Toussaint J, Hoang DM, Lee S et al (2014) Towards an advanced graphene-based magnetic resonance imaging contrast agent: sub-acute toxicity and efficacy studies in small animals. Sci Rep 5:17182–17182

    Article  CAS  Google Scholar 

  90. Bao G, Mitragotri S, Tong S (2013) Multifunctional nanoparticles for drug delivery and molecular imaging. Annu Rev Biomed Eng 15:253–282

    Article  CAS  Google Scholar 

  91. Wu Y, Briley K, Tao X (2015) Nanoparticle-based imaging of inflammatory bowel disease. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:300–315

    Google Scholar 

  92. Raynal I, Prigent P, Peyramaure S, Najid A et al (2004) Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10. Investig Radiol 39(1):56–63

    Article  CAS  Google Scholar 

  93. Van Beers B, Gallez B, Pringot J (1997) Contrast-enhanced MR imaging of the liver. Radiology 203(2):297–306

    Article  Google Scholar 

  94. Frericks BB, Wacker F, Loddenkemper C, Valdeig S et al (2009) Magnetic resonance imaging of experimental inflammatory bowel disease: quantitative and qualitative analyses with histopathologic correlation in a rat model using the ultrasmall iron oxide SHU 555 C. Investig Radiol 44(1):23–30

    Article  Google Scholar 

  95. Wu Y, Briley-Saebo K, Xie J, Zhang R et al (2014) Inflammatory bowel disease: MR-and SPECT/CT-based macrophage imaging for monitoring and evaluating disease activity in experimental mouse model – pilot study. Radiology 271(2):400–407

    Article  Google Scholar 

  96. Neuwelt A, Sidhu N, Hu C-AA, Mlady G et al (2015) Iron-based superparamagnetic nanoparticle contrast agents for MRI of infection and inflammation. Am J Roentgenol 204(3):W302–W313

    Article  Google Scholar 

  97. Aryal S, Key J, Stigliano C, Ananta JS et al (2013) Engineered magnetic hybrid nanoparticles with enhanced relaxivity for tumor imaging. Biomaterials 34(31):7725–7732

    Article  CAS  Google Scholar 

  98. Aghighi M, Golovko D, Ansari C, Marina NM et al (2015) Imaging tumor necrosis with ferumoxytol. PLoS One 10(11):e0142665

    Article  CAS  Google Scholar 

  99. Bashir MR, Bhatti L, Marin D, Nelson RC (2015) Emerging applications for ferumoxytol as a contrast agent in MRI. J Magn Reson Imaging 41(4):884–898

    Article  Google Scholar 

  100. Klenk C, Gawande R, Uslu L, Khurana A et al (2014) Ionising radiation-free whole-body MRI versus 18 F-fluorodeoxyglucose PET/CT scans for children and young adults with cancer: a prospective, non-randomised, single-centre study. Lancet Oncol 15(3):275–285

    Article  Google Scholar 

  101. Cunningham CH, Arai T, Yang PC, McConnell MV et al (2005) Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn Reson Med 53(5):999–1005

    Article  CAS  Google Scholar 

  102. Zhao Q, Langley J, Lee S, Liu W (2011) Positive contrast technique for the detection and quantification of superparamagnetic iron oxide nanoparticles in MRI. NMR Biomed 24(5):464–472

    Article  CAS  Google Scholar 

  103. Wang L, Zhong X, Qian W, Huang J et al (2014) Ultrashort echo time (UTE) imaging of receptor targeted magnetic iron oxide nanoparticles in mouse tumor models. J Magn Reson Imaging 40(5):1071–1081

    Article  Google Scholar 

  104. Zhu B, Witzel T, Jiang S, Huang SY et al (2016) Selective magnetic resonance imaging of magnetic nanoparticles by acoustically induced rotary saturation. Magn Reson Med 75(1):97–106

    Article  CAS  Google Scholar 

  105. Yang H-W, Huang C-Y, Lin C-W, Liu H-L et al (2014) Gadolinium-functionalized nanographene oxide for combined drug and microRNA delivery and magnetic resonance imaging. Biomaterials 35(24):6534–6542

    Article  CAS  Google Scholar 

  106. Cui Y, Zhang C, Luo R, Liu H et al (2016) Noninvasive monitoring of early antiangiogenic therapy response in human nasopharyngeal carcinoma xenograft model using MrI with rgD-conjugated ultrasmall superparamagnetic iron oxide nanoparticles. Int J Nanomedicine 11:5671

    Article  CAS  Google Scholar 

  107. Yuan Y, Ding Z, Qian J, Zhang J et al (2016) Casp3/7-instructed intracellular aggregation of Fe3O4 nanoparticles enhances T2 MR imaging of tumor apoptosis. Nano Lett 16(4):2686–2691

    Article  CAS  Google Scholar 

  108. Zhang H, Li J, Hu Y, Shen M et al (2016) Folic acid-targeted iron oxide nanoparticles as contrast agents for magnetic resonance imaging of human ovarian cancer. J Ovarian Res 9(1):19

    Article  CAS  Google Scholar 

  109. Chaudhary R, Roy K, Kanwar RK, Walder K et al (2016) Engineered atherosclerosis-specific zinc ferrite nanocomplex-based MRI contrast agents. J Nanobiotechnol 14(1):6

    Article  CAS  Google Scholar 

  110. Dósa E, Guillaume DJ, Haluska M, Lacy CA et al (2010) Magnetic resonance imaging of intracranial tumors: intra-patient comparison of gadoteridol and ferumoxytol. Neuro Oncol 13:251. https://doi.org/10.1093/neuonc/noq172

    Article  CAS  Google Scholar 

  111. Cheng KK, Chan PS, Fan S, Kwan SM et al (2015) Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer’s disease mice using magnetic resonance imaging (MRI). Biomaterials 44:155–172

    Article  CAS  Google Scholar 

  112. Pouw JJ, Grootendorst MR, Bezooijen R, Klazen CA et al (2015) Pre-operative sentinel lymph node localization in breast cancer with superparamagnetic iron oxide MRI: the SentiMAG multicentre trial imaging subprotocol. Br J Radiol 88(1056):20150634

    Article  Google Scholar 

  113. Cowger TA, Tang W, Zhen Z, Hu K et al (2015) Casein-coated Fe5C2 nanoparticles with superior r2 relaxivity for liver-specific magnetic resonance imaging. Theranostics 5(11):1225

    Article  CAS  Google Scholar 

  114. Liu F, Le W, Mei T, Wang T et al (2016) In vitro and in vivo targeting imaging of pancreatic cancer using a Fe3O4@ SiO2 nanoprobe modified with anti-mesothelin antibody. Int J Nanomedicine 11:2195

    CAS  Google Scholar 

  115. Huang J, Qian W, Wang L, Wu H et al (2016) Functionalized milk-protein-coated magnetic nanoparticles for MRI-monitored targeted therapy of pancreatic cancer. Int J Nanomedicine 11:3087

    CAS  Google Scholar 

  116. Jeon TY, Kim JH, Im GH, Kim J-H et al (2016) Hollow manganese oxide nanoparticle-enhanced MRI of hypoxic-ischaemic brain injury in the neonatal rat. Br J Radiol 89(1067):20150806

    Article  Google Scholar 

  117. Luo Y, Yang J, Li J, Yu Z et al (2015) Facile synthesis and functionalization of manganese oxide nanoparticles for targeted T1-weighted tumor MR imaging. Colloids Surf B: Biointerfaces 136:506–513

    Article  CAS  Google Scholar 

  118. Huang H, Yue T, Xu K, Golzarian J et al (2015) Fabrication and evaluation of tumor-targeted positive MRI contrast agent based on ultrasmall MnO nanoparticles. Colloids Surf B: Biointerfaces 131:148–154

    Article  CAS  Google Scholar 

  119. Kuo Y-T, Chen C-Y, Liu G-C, Wang Y-M (2016) Development of bifunctional gadolinium-labeled superparamagnetic nanoparticles (Gd-MnMEIO) for in vivo MR imaging of the liver in an animal model. PLoS One 11(2):e0148695

    Article  CAS  Google Scholar 

  120. Vu-Quang H, Vinding MS, Xia D, Nielsen T et al (2016) Chitosan-coated poly (lactic-co-glycolic acid) perfluorooctyl bromide nanoparticles for cell labeling in 19 F magnetic resonance imaging. Carbohydr Polym 136:936–944

    Article  CAS  Google Scholar 

  121. Duan L, Yang F, Song L, Fang K et al (2015) Controlled assembly of magnetic nanoparticles on microbubbles for multimodal imaging. Soft Matter 11(27):5492–5500

    Article  CAS  Google Scholar 

  122. Xu S, Yang F, Zhou X, Zhuang Y et al (2015) Uniform PEGylated PLGA microcapsules with embedded Fe3O4 nanoparticles for US/MR dual-modality imaging. ACS Appl Mater Interfaces 7(36):20460–20468

    Article  CAS  Google Scholar 

  123. Song S, Guo H, Jiang Z, Jin Y et al (2015) Self-assembled microbubbles as contrast agents for ultrasound/magnetic resonance dual-modality imaging. Acta Biomater 24:266–278

    Article  CAS  Google Scholar 

  124. Niu C, Wang Z, Lu G, Krupka TM et al (2013) Doxorubicin loaded superparamagnetic PLGA-iron oxide multifunctional microbubbles for dual-mode US/MR imaging and therapy of metastasis in lymph nodes. Biomaterials 34(9):2307–2317

    Article  CAS  Google Scholar 

  125. Huang H-Y, Hu S-H, Hung S-Y, Chiang C-S et al (2013) SPIO nanoparticle-stabilized PAA-F127 thermosensitive nanobubbles with MR/US dual-modality imaging and HIFU-triggered drug release for magnetically guided in vivo tumor therapy. J Control Release 172(1):118–127

    Article  CAS  Google Scholar 

  126. Xu B, Dou H, Tao K, Sun K et al (2011) “Two-in-one” fabrication of Fe3O4/MePEG-PLA composite nanocapsules as a potential ultrasonic/MRI dual contrast agent. Langmuir 27(19):12134–12142

    Article  CAS  Google Scholar 

  127. Zhao Y, Song W, Wang D, Ran H et al (2015) Phase-shifted PFH@ PLGA/Fe3O4 nanocapsules for MRI/US imaging and photothermal therapy with near-infrared irradiation. ACS Appl Mater Interfaces 7(26):14231–14242

    Article  CAS  Google Scholar 

  128. Cheng X, Li H, Chen Y, Luo B et al (2013) Ultrasound-triggered phase transition sensitive magnetic fluorescent nanodroplets as a multimodal imaging contrast agent in rat and mouse model. PLoS One 8(12):e85003

    Article  CAS  Google Scholar 

  129. Kempen PJ, Greasley S, Parker KA, Campbell JL et al (2015) Theranostic mesoporous silica nanoparticles biodegrade after pro-survival drug delivery and ultrasound/magnetic resonance imaging of stem cells. Theranostics 5(6):631

    Article  CAS  Google Scholar 

  130. Nolte I, Vince GH, Maurer M, Herbold C et al (2005) Iron particles enhance visualization of experimental gliomas with high-resolution sonography. Am J Neuroradiol 26(6):1469–1474

    Google Scholar 

  131. Linker R, Kroner A, Horn T, Gold R et al (2006) Iron particle–enhanced visualization of inflammatory central nervous system lesions by high resolution: preliminary data in an animal model. Am J Neuroradiol 27(6):1225–1229

    CAS  Google Scholar 

  132. Oh J, Feldman MD, Kim J, Condit C et al (2006) Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound. Nanotechnology 17(16):4183

    Article  CAS  Google Scholar 

  133. Mehrmohammadi M, Oh J, Mallidi S, Emelianov SY (2011) Pulsed magneto-motive ultrasound imaging using ultrasmall magnetic nanoprobes. Mol Imaging 10(2):102. https://doi.org/10.2310/7290.2010.00037

    Article  Google Scholar 

  134. Evertsson M, Kjellman P, Cinthio M, Fredriksson S et al (2014) Multimodal detection of iron oxide nanoparticles in rat lymph nodes using magnetomotive ultrasound imaging and magnetic resonance imaging. IEEE Trans Ultrason Ferroelectr Freq Control 61(8):1276–1283

    Article  Google Scholar 

  135. Perlman O, Azhari H (2017) Ultrasonic computed tomography imaging of iron oxide nanoparticles. Phys Med Biol 62(3):825

    Article  CAS  Google Scholar 

  136. Perlman O, Weitz IS, Azhari H (2015) Copper oxide nanoparticles as contrast agents for MRI and ultrasound dual-modality imaging. Phys Med Biol 60(15):5767

    Article  CAS  Google Scholar 

  137. An L, Hu H, Du J, Wei J et al (2014) Paramagnetic hollow silica nanospheres for in vivo targeted ultrasound and magnetic resonance imaging. Biomaterials 35(20):5381–5392

    Article  CAS  Google Scholar 

  138. Barnett BP, Ruiz-Cabello J, Hota P, Ouwerkerk R et al (2011) Use of perfluorocarbon nanoparticles for non-invasive multimodal cell tracking of human pancreatic islets. Contrast Media Mol Imaging 6(4):251–259

    Article  CAS  Google Scholar 

  139. Thakor AS, Jokerst JV, Ghanouni P, Campbell JL et al (2016) Clinically approved nanoparticle imaging agents. J Nucl Med 57(12):1833–1837

    Article  CAS  Google Scholar 

  140. Scheinberg DA, Grimm J, Heller DA, Stater EP et al (2017) Advances in the clinical translation of nanotechnology. Curr Opin Biotechnol 46:66–73

    Article  CAS  Google Scholar 

  141. Kiessling F, Mertens ME, Grimm J, Lammers T (2014) Nanoparticles for imaging: top or flop? Radiology 273(1):10–28

    Article  Google Scholar 

  142. Gu FX, Karnik R, Wang AZ, Alexis F et al (2007) Targeted nanoparticles for cancer therapy. Nano Today 2(3):14–21

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haim Azhari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perlman, O., Azhari, H. (2018). MRI and Ultrasound Imaging of Nanoparticles for Medical Diagnosis. In: Kumar, C. (eds) Nanotechnology Characterization Tools for Biosensing and Medical Diagnosis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56333-5_8

Download citation

Publish with us

Policies and ethics