Skip to main content

ATR-FTIR Spectroscopy Tools for Medical Diagnosis and Disease Investigation

  • Chapter
  • First Online:

Abstract

Vibrational spectroscopic techniques are increasingly utilized in biomedical research. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy has been applied extensively to investigate various diseases by determining the chemical and molecular differences coming with the disease. Being label-free, nondestructive, and inexpensive, biospectroscopy could potentially make a perfect diagnostic tool in the years to come.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Theophilou G, Paraskevaidi M, Lima KM, Kyrgiou M, Martin-Hirsch PL, Martin FL (2015) Extracting biomarkers of commitment to cancer development: potential role of vibrational spectroscopy in systems biology. Expert Rev Mol Diagn 15(5):693–713

    Article  CAS  Google Scholar 

  2. Stuart B, Infrared Spectroscopy: Fundamentals and Applications. Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc. 2005; https://doi.org/10.1002/0471238961.0914061810151405.a01.pub2

  3. Movasaghi Z, Rehman S, ur Rehman DI (2008) Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev 43(2):134–179

    Article  CAS  Google Scholar 

  4. Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM et al (2014) Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc 9(8):1771–1791

    Article  CAS  Google Scholar 

  5. Mackanos MA, Contag CH (2010) Fiber-optic probes enable cancer detection with FTIR spectroscopy. Trends Biotechnol 28(6):317–323

    Article  CAS  Google Scholar 

  6. Sahu R, Mordechai S (2005) Fourier transform infrared spectroscopy in cancer detection. Future Oncol 1(5):635–647

    Article  CAS  Google Scholar 

  7. Lechowicz L, Chrapek M, Gaweda J, Urbaniak M, Konieczna I (2016) Use of Fourier-transform infrared spectroscopy in the diagnosis of rheumatoid arthritis: a pilot study. Mol Biol Rep 43(12):1321–1326

    Article  CAS  Google Scholar 

  8. Sitole L, Steffens F, Krüger TPJ, Meyer D (2014) Mid-ATR-FTIR spectroscopic profiling of HIV/AIDS sera for novel systems diagnostics in global health. Omics J Integr Biol 18(8):513–523

    Article  CAS  Google Scholar 

  9. Markus APJ, Swinkels DW, Jakobs BS, Wevers RA, Trijbels JF, Willems HL (2001) New technique for diagnosis and monitoring of alcaptonuria: quantification of homogentisic acid in urine with mid-infrared spectrometry. Anal Chim Acta 429(2):287–292

    Article  CAS  Google Scholar 

  10. Khoshmanesh A, Dixon MWA, Kenny S, Tilley L, McNaughton D, Wood BR (2014) Detection and quantification of early-stage malaria parasites in laboratory infected erythrocytes by attenuated Total reflectance infrared spectroscopy and multivariate analysis. Anal Chem 86(9):4379–4386

    Article  CAS  Google Scholar 

  11. Coopman R, Van de Vyver T, Kishabongo AS, Katchunga P, Van Aken EH, Cikomola J et al (2017) Glycation in human fingernail clippings using ATR-FTIR spectrometry, a new marker for the diagnosis and monitoring of diabetes mellitus. Clin Biochem 50(1–2):62–67

    Article  CAS  Google Scholar 

  12. Yoshida S, Yoshida M, Yamamoto M, Takeda J (2013) Optical screening of diabetes mellitus using non-invasive Fourier-transform infrared spectroscopy technique for human lip. J Pharm Biomed Anal 76:169–176

    Article  CAS  Google Scholar 

  13. Grimard V, Li C, Ramjeesingh M, Bear CE, Goormaghtigh E, Ruysschaert JM (2004) Phosphorylation-induced conformational changes of cystic fibrosis transmembrane conductance regulator monitored by attenuated Total reflection-Fourier transform IR spectroscopy and fluorescence spectroscopy. J Biol Chem 279(7):5528–5536

    Article  CAS  Google Scholar 

  14. Aksoy C, Guliyev A, Kilic E, Uckan D, Severcan F (2012) Bone marrow mesenchymal stem cells in patients with beta thalassemia major: molecular analysis with attenuated total reflection-Fourier transform infrared spectroscopy study as a novel method. Stem Cells Dev 21(11):2000–2011

    Article  CAS  Google Scholar 

  15. Khanmohammadi M, Garmarudi AB, Ramin M, Ghasemi K (2013) Diagnosis of renal failure by infrared spectrometric analysis of human serum samples and soft independent modeling of class analogy. Microchem J 106:67–72

    Article  CAS  Google Scholar 

  16. Mulready KJ, McGoldrick D (2012) The establishment of a standard and real patient kidney stone library utilizing Fourier transform-infrared spectroscopy with a diamond ATR accessory. Urol Res 40(5):483–498

    Article  Google Scholar 

  17. Graça G, Moreira AS, Correia AJV, Goodfellow BJ, Barros AS, Duarte IF et al (2013) Mid-infrared (MIR) metabolic fingerprinting of amniotic fluid: a possible avenue for early diagnosis of prenatal disorders? Anal Chim Acta 764:24–31

    Article  Google Scholar 

  18. Sarroukh R, Goormaghtigh E, Ruysschaert J-M, Raussens V (2013) ATR-FTIR: a “rejuvenated” tool to investigate amyloid proteins. Biochim Biophys Acta Biomembr 1828(10):2328–2338

    Article  CAS  Google Scholar 

  19. Taylor SE, Cheung KT, Patel II, Trevisan J, Stringfellow HF, Ashton KM et al (2011) Infrared spectroscopy with multivariate analysis to interrogate endometrial tissue: a novel and objective diagnostic approach. Br J Cancer 104(5):790–797

    Article  CAS  Google Scholar 

  20. Wong PTT, Lacelle S, Fung MFK, Senterman M, Mikhael NZ (1995) Characterization of exfoliated cells and tissues from human endocervix and ectocervix by FTIR and ATR/FTIR spectroscopy. Biospectroscopy 1(5):357–364

    Article  CAS  Google Scholar 

  21. Gajjar K, Heppenstall LD, Pang W, Ashton KM, Trevisan J, Patel II et al (2013) Diagnostic segregation of human brain tumours using Fourier-transform infrared and/or Raman spectroscopy coupled with discriminant analysis. Anal Methods 5(1):89–102

    Article  CAS  Google Scholar 

  22. Staniszewska E, Malek K, Baranska M (2014) Rapid approach to analyze biochemical variation in rat organs by ATR FTIR spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 118:981–986

    Article  CAS  Google Scholar 

  23. Theophilou G, Lima KMG, Martin-Hirsch PL, Stringfellow HF, Martin FL (2016) ATR-FTIR spectroscopy coupled with chemometric analysis discriminates normal, borderline and malignant ovarian tissue: classifying subtypes of human cancer. Analyst 141(2):585–594

    Article  CAS  Google Scholar 

  24. Sun X, Xu Y, Wu J, Zhang Y, Sun K (2013) Detection of lung cancer tissue by attenuated total reflection-Fourier transform infrared spectroscopy-a pilot study of 60 samples. J Surg Res 179(1):33–38

    Article  CAS  Google Scholar 

  25. Kazarian SG, Chan KLA (2006) Applications of ATR-FTIR spectroscopic imaging to biomedical samples. Biochim Biophys Acta Biomembr 1758(7):858–867

    Article  CAS  Google Scholar 

  26. Lima CA, Goulart VP, Côrrea L, Pereira TM, Zezell DM (2015) ATR-FTIR spectroscopy for the assessment of biochemical changes in skin due to cutaneous squamous cell carcinoma. Int J Mol Sci 16(4):6621–6630

    Article  CAS  Google Scholar 

  27. Theophilou G, Lima KMG, Briggs M, Martin-Hirsch PL, Stringfellow HF, Martin FLA (2015) Biospectroscopic analysis of human prostate tissue obtained from different time periods points to a trans-generational alteration in spectral phenotype. Sci Rep 5:13465

    Article  CAS  Google Scholar 

  28. Cui L, Butler HJ, Martin-Hirsch PL, Martin FL (2016) Aluminium foil as a potential substrate for ATR-FTIR, transflection FTIR or Raman spectrochemical analysis of biological specimens. Anal Methods 8(3):481–487

    Article  CAS  Google Scholar 

  29. Walsh MJ, Kajdacsy-Balla A, Holton SE, Bhargava R (2012) Attenuated total reflectance Fourier-transform infrared spectroscopic imaging for breast histopathology. Vib Spectrosc 60:23–28

    Article  CAS  Google Scholar 

  30. Tian P, Zhang W, Zhao H, Lei Y, Cui L, Wang W et al (2015) Intraoperative diagnosis of benign and malignant breast tissues by fourier transform infrared spectroscopy and support vector machine classification. Int J Clin Exp Med 8(1):972

    CAS  Google Scholar 

  31. Zohdi V, Whelan DR, Wood BR, Pearson JT, Bambery KR, Black MJ (2015) Importance of tissue preparation methods in FTIR micro-spectroscopical analysis of biological tissues:‘traps for new users. PLoS One 10(2):e0116491

    Article  Google Scholar 

  32. Dogan A, Lasch P, Neuschl C, Millrose MK, Alberts R, Schughart K et al (2013) ATR-FTIR spectroscopy reveals genomic loci regulating the tissue response in high fat diet fed BXD recombinant inbred mouse strains. BMC Genomics 14(1):386

    Article  CAS  Google Scholar 

  33. Yao H, Shi X, Zhang Y (2014) The use of FTIR-ATR spectrometry for evaluation of surgical resection margin in colorectal cancer: a pilot study of 56 samples. Journal of. Spectroscopy 2014:4

    Google Scholar 

  34. Li Q-B, Sun X-J, Y-Z X, Yang L-M, Zhang Y-F, Weng S-F et al (2005) Use of Fourier-transform infrared spectroscopy to rapidly diagnose gastric endoscopic biopsies. World J Gastroenterol: WJG 11(25):3842–3845

    Article  Google Scholar 

  35. Wang TD, Triadafilopoulos G, Crawford JM, Dixon LR, Bhandari T, Sahbaie P et al (2007) Detection of endogenous biomolecules in Barrett's esophagus by Fourier transform infrared spectroscopy. Proc Natl Acad Sci 104(40):15864–15869

    Article  CAS  Google Scholar 

  36. Bird B, Miljkovic M, Remiszewski S, Akalin A, Kon M, Diem M (2012) Infrared spectral histopathology (SHP): a novel diagnostic tool for the accurate classification of lung cancer. Lab Investig 92(9):1358–1373

    Article  Google Scholar 

  37. Gajjar K, Ahmadzai AA, Valasoulis G, Trevisan J, Founta C, Nasioutziki M et al (2014) Histology verification demonstrates that biospectroscopy analysis of cervical cytology identifies underlying disease more accurately than conventional screening: removing the confounder of discordance. PLoS One 9(1):e82416

    Article  Google Scholar 

  38. Martin FL, Kelly JG, Llabjani V, Martin-Hirsch PL, Patel II, Trevisan J et al (2010) Distinguishing cell types or populations based on the computational analysis of their infrared spectra. Nat Protoc 5(11):1748–1760

    Article  CAS  Google Scholar 

  39. Andrew Chan KL, Kazarian SG (2016) Attenuated total reflection Fourier-transform infrared (ATR-FTIR) imaging of tissues and live cells. Chem Soc Rev 45(7):1850–1864

    Article  CAS  Google Scholar 

  40. Miljković M, Bird B, Lenau K, Mazur AI, Diem M (2013) Spectral cytopathology: new aspects of data collection, manipulation and confounding effects. Analyst 138(14):3975–3982

    Article  Google Scholar 

  41. Khanmohammadi M, Ansari MA, Garmarudi AB, Hassanzadeh G, Garoosi G (2007) Cancer diagnosis by discrimination between normal and malignant human blood samples using attenuated total reflectance-Fourier transform infrared spectroscopy. Cancer Investig 25(6):397–404

    Article  CAS  Google Scholar 

  42. Hoşafçı G, Klein O, Oremek G, Mäntele W (2007) Clinical chemistry without reagents? An infrared spectroscopic technique for determination of clinically relevant constituents of body fluids. Anal Bioanal Chem 387(5):1815

    Article  Google Scholar 

  43. Hands JR, Dorling KM, Abel P, Ashton KM, Brodbelt A, Davis C et al (2014) Attenuated Total reflection Fourier transform infrared (ATR-FTIR) spectral discrimination of brain tumour severity from serum samples. J Biophotonics 7(3–4):189–199

    Article  CAS  Google Scholar 

  44. Gajjar K, Trevisan J, Owens G, Keating PJ, Wood NJ, Stringfellow HF et al (2013) Fourier-transform infrared spectroscopy coupled with a classification machine for the analysis of blood plasma or serum: a novel diagnostic approach for ovarian cancer. Analyst 138(14):3917–3926

    Article  CAS  Google Scholar 

  45. Owens GL, Gajjar K, Trevisan J, Fogarty SW, Taylor SE, Da Gama-Rose B et al (2014) Vibrational biospectroscopy coupled with multivariate analysis extracts potentially diagnostic features in blood plasma/serum of ovarian cancer patients. J Biophotonics 7(3–4):200–209

    Article  CAS  Google Scholar 

  46. Lewis PD, Lewis KE, Ghosal R, Bayliss S, Lloyd AJ, Wills J et al (2010) Evaluation of FTIR spectroscopy as a diagnostic tool for lung cancer using sputum. BMC Cancer 10(1):640

    Article  CAS  Google Scholar 

  47. Khaustova S, Shkurnikov M, Tonevitsky E, Artyushenko V, Tonevitsky A (2010) Noninvasive biochemical monitoring of physiological stress by Fourier transform infrared saliva spectroscopy. Analyst 135(12):3183–3192

    Article  CAS  Google Scholar 

  48. Hans KM, Muller S, Sigrist MW (2012) Infrared attenuated total reflection (IR-ATR) spectroscopy for detecting drugs in human saliva. Drug Test Anal 4(6):420–429

    Article  CAS  Google Scholar 

  49. Nagase Y, Yoshida S, Kamiyama K (2005) Analysis of human tear fluid by Fourier transform infrared spectroscopy. Biopolymers 79(1):18–27

    Article  CAS  Google Scholar 

  50. Nabers A, Ollesch J, Schartner J, Kötting C, Genius J, Hafermann H et al (2016) Amyloid-β-secondary structure distribution in cerebrospinal fluid and blood measured by an Immuno-infrared-sensor: a biomarker candidate for Alzheimer’s disease. Anal Chem 88(5):2755–2762

    Article  CAS  Google Scholar 

  51. Poste G (2011) Bring on the biomarkers. Nature 469(7329):156–157

    Article  CAS  Google Scholar 

  52. Adhyam M, Gupta AKA (2012) Review on the clinical utility of PSA in cancer prostate. Indian J Surg Oncol 3(2):120–129

    Article  Google Scholar 

  53. Mitchell AL, Gajjar KB, Theophilou G, Martin FL, Martin-Hirsch PL (2014) Vibrational spectroscopy of biofluids for disease screening or diagnosis: translation from the laboratory to a clinical setting. J Biophotonics 7(3–4):153–165

    Article  CAS  Google Scholar 

  54. Rhodes A, Jasani B, Balaton AJ, Barnes DM, Miller KD (2000) Frequency of oestrogen and progesterone receptor positivity by immunohistochemical analysis in 7016 breast carcinomas: correlation with patient age, assay sensitivity, threshold value, and mammographic screening. J Clin Pathol 53(9):688–696

    Article  CAS  Google Scholar 

  55. Humpel C (2011) Identifying and validating biomarkers for Alzheimer’s disease. Trends Biotechnol 29(1):26–32

    Article  CAS  Google Scholar 

  56. Swedko PJ, Clark HD, Paramsothy K, Akbari A (2003) Serum creatinine is an inadequate screening test for renal failure in elderly patients. Arch Intern Med 163(3):356–360

    Article  CAS  Google Scholar 

  57. Lovergne L, Bouzy P, Untereiner V, Garnotel R, Baker MJ, Thiefin G et al (2016) Biofluid infrared spectro-diagnostics: pre-analytical considerations for clinical applications. Faraday Discuss 187(0):521–537

    Article  CAS  Google Scholar 

  58. Chiappin S, Antonelli G, Gatti R, De Palo EF (2007) Saliva specimen: a new laboratory tool for diagnostic and basic investigation. Clin Chim Acta 383(1–2):30–40

    Article  CAS  Google Scholar 

  59. Mitchell BL, Yasui Y, Li CI, Fitzpatrick AL, Lampe PD (2005) Impact of freeze-thaw cycles and storage time on plasma samples used in mass spectrometry based biomarker discovery projects. Cancer Informat 1:98

    Article  CAS  Google Scholar 

  60. Gremlich HU, Yan B (2000) Infrared and Raman spectroscopy of biological materials, Practical Spectroscopy Series Volume 24; 2000 Sep 25, Marcel Dekker, Inc. New York, USA

    Google Scholar 

  61. Hands JR, Abel P, Ashton K, Dawson T, Davis C, Lea RW et al (2013) Investigating the rapid diagnosis of gliomas from serum samples using infrared spectroscopy and cytokine and angiogenesis factors. Anal Bioanal Chem 405(23):7347–7355

    Article  CAS  Google Scholar 

  62. Byrne HJ, Baranska M, Puppels GJ, Stone N, Wood B, Gough KM et al (2015) Spectropathology for the next generation: quo vadis? Analyst 140(7):2066–2073

    Article  CAS  Google Scholar 

  63. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653):827–829

    Article  CAS  Google Scholar 

  64. Filik J, Stone N (2007) Drop coating deposition Raman spectroscopy of protein mixtures. Analyst 132(6):544–550

    Article  CAS  Google Scholar 

  65. Bonnier F, Brachet G, Duong R, Sojinrin T, Respaud R, Aubrey N et al (2016) Screening the low molecular weight fraction of human serum using ATR-IR spectroscopy. J Biophotonics 9(10):1085–1097

    Article  CAS  Google Scholar 

  66. Martin M, Perez-Guaita D, Andrew DW, Richards JS, Wood BR, Heraud P (2017) The effect of common anticoagulants in detection and quantification of malaria parasitemia in human red blood cells by ATR-FTIR spectroscopy. Analyst. https://doi.org/10.1039/C6AN02075E.

  67. Lam NYL, Rainer TH, Chiu RWK, YMD L (2004) EDTA Is A better anticoagulant than heparin or citrate for delayed blood processing for plasma DNA analysis. Clin Chem 50(1):256–257

    Article  CAS  Google Scholar 

  68. Bassan P, Lee J, Sachdeva A, Pissardini J, Dorling KM, Fletcher JS et al (2013) The inherent problem of transflection-mode infrared spectroscopic microscopy and the ramifications for biomedical single point and imaging applications. Analyst 138(1):144–157

    Article  CAS  Google Scholar 

  69. Sammon C, Schultz ZD, Kazarian S, Barr H, Goodacre R, Graham D et al (2016) Spectral pathology: general discussion. Faraday Discuss 187(0):155–186

    Article  CAS  Google Scholar 

  70. Trevisan J, Angelov PP, Carmichael PL, Scott AD, Martin FL (2012) Extracting biological information with computational analysis of Fourier-transform infrared (FTIR) biospectroscopy datasets: current practices to future perspectives. Analyst 137(14):3202–3215

    Article  CAS  Google Scholar 

  71. Krafft C, Steiner G, Beleites C, Salzer R (2009) Disease recognition by infrared and Raman spectroscopy. J Biophotonics 2(1–2):13–28

    Article  CAS  Google Scholar 

  72. Butler HJ, Ashton L, Bird B, Cinque G, Curtis K, Dorney J et al (2016) Using Raman spectroscopy to characterize biological materials. Nat Protoc 11(4):664–687

    Article  CAS  Google Scholar 

  73. Glassford SE, Byrne B, Kazarian SG (2013) Recent applications of ATR FTIR spectroscopy and imaging to proteins. Biochim Biophys Acta (BBA) Proteins Proteomics 1834(12):2849–2858

    Article  CAS  Google Scholar 

  74. Ataka K, Stripp ST, Heberle J (2013) Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins. Biochim Biophys Acta (BBA) Biomembranes 1828(10):2283–2293

    Article  CAS  Google Scholar 

  75. JY X, Chen TW, Bao WJ, Wang K, Xia XH (2012) Label-free strategy for in-situ analysis of protein binding interaction based on attenuated Total reflection surface enhanced infrared absorption spectroscopy (ATR-SEIRAS). Langmuir 28(50):17564–17570

    Article  Google Scholar 

  76. Adato R, Altug H (2013) In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nat Commun 4:2154

    Article  Google Scholar 

  77. Kazarian SG, Chan KLA (2013) ATR-FTIR spectroscopic imaging: recent advances and applications to biological systems. Analyst 138(7):1940–1951

    Article  CAS  Google Scholar 

  78. Mordechai S, Shufan E, Porat Katz BS, Salman A (2017) Early diagnosis of Alzheimer's disease using infrared spectroscopy of isolated blood samples followed by multivariate analyses. Analyst 142:1276

    Article  CAS  Google Scholar 

  79. Walsh MJ, German MJ, Singh M, Pollock HM, Hammiche A, Kyrgiou M et al (2007) IR microspectroscopy: potential applications in cervical cancer screening. Cancer Lett 246(1–2):1–11

    Article  CAS  Google Scholar 

  80. Abbasi F, Mirzadeh H, Katbab AA (2002) Bulk and surface modification of silicone rubber for biomedical applications. Polym Int 51(10):882–888

    Article  CAS  Google Scholar 

  81. Tsai D-H, Davila-Morris M, DelRio FW, Guha S, Zachariah MR, Hackley VA (2011) Quantitative determination of competitive molecular adsorption on gold nanoparticles using attenuated total reflectance–Fourier transform infrared spectroscopy. Langmuir 27(15):9302–9313

    Article  CAS  Google Scholar 

  82. Biazar E, Khorasani M, Daliri M (2011) Cell sheet engineering: solvent effect on nanometric grafting of poly-N-isopropylacrylamide onto polystyrene substrate under ultraviolet radiation. Int J Nanomedicine 6:295–302

    Article  CAS  Google Scholar 

  83. Biazar E, Heidari M, Asefnejad A, Montazeri N (2011) The relationship between cellular adhesion and surface roughness in polystyrene modified by microwave plasma radiation. Int J Nanomedicine 6:631–639

    Article  CAS  Google Scholar 

  84. Meenach SA, Vogt FG, Anderson KW, Hilt JZ, McGarry RC, Mansour HM (2013) Design, physicochemical characterization, and optimization of organic solution advanced spray-dried inhalable dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine poly(ethylene glycol) (DPPE-PEG) microparticles and nanoparticles for targeted respiratory nanomedicine delivery as dry powder inhalation aerosols. Int J Nanomedicine 8:275–293

    Google Scholar 

  85. Mudunkotuwa IA, Minshid AA, Grassian VH (2014) ATR-FTIR spectroscopy as a tool to probe surface adsorption on nanoparticles at the liquid-solid interface in environmentally and biologically relevant media. Analyst 139(5):870–881

    Article  CAS  Google Scholar 

  86. Beleites C, Neugebauer U, Bocklitz T, Krafft C, Popp J (2013) Sample size planning for classification models. Anal Chim Acta 760:25–33

    Article  CAS  Google Scholar 

  87. Kalmodia S, Parameswaran S, Yang W, Barrow CJ, Krishnakumar S (2015) Attenuated Total reflectance Fourier transform infrared spectroscopy: an analytical technique to understand therapeutic responses at the molecular level. Sci Rep 5:16649

    Article  CAS  Google Scholar 

  88. Kelly JG, Angelov PP, Trevisan J, Vlachopoulou A, Paraskevaidis E, Martin-Hirsch PL et al (2010) Robust classification of low-grade cervical cytology following analysis with ATR-FTIR spectroscopy and subsequent application of self-learning classifier eClass. Anal Bioanal Chem 398(5):2191–2201

    Article  CAS  Google Scholar 

  89. Lane R, Seo SS (2012) Attenuated Total reflectance Fourier transform infrared spectroscopy method to differentiate between normal and cancerous breast cells. J Nanosci Nanotechnol 12(9):7395–7400

    Article  CAS  Google Scholar 

  90. Holton SE, Walsh MJ, Bhargava R (2011) Subcellular localization of early biochemical transformations in cancer-activated fibroblasts using infrared spectroscopic imaging. Analyst 136(14):2953–2958

    Article  CAS  Google Scholar 

  91. Purandare NC, Patel II, Trevisan J, Bolger N, Kelehan R, von Bunau G et al (2013) Biospectroscopy insights into the multi-stage process of cervical cancer development: probing for spectral biomarkers in cytology to distinguish grades. Analyst 138(14):3909–3916

    Article  CAS  Google Scholar 

  92. BB W, Gong YP, XH W, Chen YY, Chen FF, Jin LT et al (2015) Fourier transform infrared spectroscopy for the distinction of MCF-7 cells treated with different concentrations of 5-fluorouracil. J Transl Med 13(1):108

    Article  Google Scholar 

  93. Halliwell DE, Kyrgiou M, Mitra A, Kalliala I, Paraskevaidis E, Theophilou G et al (2016) Tracking the impact of excisional cervical treatment on the cervix using biospectroscopy. Sci Rep 6:38921

    Article  CAS  Google Scholar 

  94. Titus J, Filfili C, Hilliard JK, Ward JA, Unil Perera A (2014) Early detection of cell activation events by means of attenuated total reflection Fourier transform infrared spectroscopy. Appl Phys Lett 104(24):243705

    Article  Google Scholar 

  95. Hands JR, Clemens G, Stables R, Ashton K, Brodbelt A, Davis C et al (2016) Brain tumour differentiation: rapid stratified serum diagnostics via attenuated total reflection Fourier-transform infrared spectroscopy. J Neuro-Oncol 127(3):463–472

    Article  Google Scholar 

  96. Hughes C, Baker MJ (2016) Can mid-infrared biomedical spectroscopy of cells, fluids and tissue aid improvements in cancer survival? A patient paradigm. Analyst 141(2):467–475

    Article  CAS  Google Scholar 

  97. Argov S, Ramesh J, Salman A, Sinelnikov I, Goldstein J, Guterman H et al (2002) Diagnostic potential of Fourier-transform infrared microspectroscopy and advanced computational methods in colon cancer patients. J Biomed Opt 7(2):248–254

    Article  Google Scholar 

  98. Ellis DI, Goodacre R (2006) Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst 131(8):875–885

    Article  CAS  Google Scholar 

  99. Diamandis EP (2010) Cancer biomarkers: can we turn recent failures into success? J Natl Cancer Inst 102:1462

    Article  CAS  Google Scholar 

  100. Baker MJ, Hussain SR, Lovergne L, Untereiner V, Hughes C, Lukaszewski RA et al (2016) Developing and understanding biofluid vibrational spectroscopy: a critical review. Chem Soc Rev 45(7):1803–1818

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank all our collaborators over the years and all the study participants who have contributed to our research. The kind generosity of Rosemere Cancer Foundation in supporting our studies is also acknowledged; M.P. is a current recipient of one of their PhD studentships. We would also like to thank our colleagues at Lancashire Teaching Hospital NHS Trust who have selflessly facilitated many of our studies over the years. Finally, we would like to acknowledge the manufacturers for permission to copy and republish images of their instruments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis L. Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paraskevaidi, M., Martin-Hirsch, P.L., Martin, F.L. (2018). ATR-FTIR Spectroscopy Tools for Medical Diagnosis and Disease Investigation. In: Kumar, C. (eds) Nanotechnology Characterization Tools for Biosensing and Medical Diagnosis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56333-5_4

Download citation

Publish with us

Policies and ethics