Skip to main content

In Vivo Near-Infrared Fluorescence Imaging Based on Polymer Dots

  • Chapter
  • First Online:
Book cover Nanotechnology Characterization Tools for Biosensing and Medical Diagnosis
  • 1131 Accesses

Abstract

Conjugated polymer dots emerge as attractive molecular imaging nanoprobes in living animals because of their excellent optical properties including bright fluorescence intensity, excellent photostability, high emission rates, and low intrinsic cytotoxicity. In this chapter we focused on the preparation of near-infrared (NIR)-emitting polymer dots by nano-precipitation method (matrix-encapsulation method), miniemulsion method, and in situ colloidal Knoevenagel polymerization methods and their applications for in vivo NIR fluorescence imaging, including imaging of lymphatic basins, tumors, zebrafish, and oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIE:

Aggregation-induced-emission

BODIPY:

Phthalocyanine- and boron dipyrrin

BRET:

Bioluminescence resonance energy transfer

BSA:

Bovine serum albumin

BTE:

Bisthienylethene derivative, 1,2-bis(2,4-dimethyl-5-phenyl-3-thienyl)-3,3,4,4,5,5-hexafluoro-1-cyclopentene

BTTP:

5,7-bis(5-bromo-2-thienyl)-2,3-dimethylthieno[3,4-b]pyrazine

BTTPF:

BTTP copolymized with 2,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9,9-bis[30-(dimethylamino)propyl] fluorine

C7-FA:

Homemade heptylamine modified folate

CN-PPVs:

Cyanosubstituted derivatives of poly(p-phenylenevinylene)

CPDP-FA NPs:

CP-loaded DSPE-PEG-folic acid nanoparticles

cRGD:

Cyclic RGD peptides

cvCP:

Anovinylene-backboned conjugated polymers

cvPDs:

Cyanovinylene-backboned polymer dots

CZ:

3,6-dibromo-9-(2-butyloctyl)-9H–carbazole

Dox:

Doxorubicin

DPPF:

poly{3-(5-(9-hexyl-9-octyl-9H-uoren-2-yl)thiophen-2-yl)-2,5-bis(2-hexyldecyl)-6-(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione}

DSPE:

2-distearoyl-sn-glycero-3-phosphoethanolamine

DSPE-PEG2000:

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]

DSPE-PEG-NH2:

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000]

DTT:

2,6-dibromo-4,4-dihexyl-4H-cyclopenta[1,2-b:5,4-b’]dithiophene

EPR:

Enhanced permeability and retention

FRET:

Fluorescence resonance energy transfer

MEH-PPV:

poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]

NanoDRONE:

Dual-color SPN-based NIR nanoprobe for the detection of RONS

NIR775:

Silicon 2, 3-naphthalocyanine bis(trihexylsilyloxide)

PCFDP:

[9,9′-dihexyl-2,7-bis(1-cyanovinylene)fluorenylene-alt-co-2,5-bis(N,N′-diphenylamino)-1,4-phenylene]

PCPDTBT:

poly[2,6-(4,4-bis-(2-ethylhexyl)-4H–cyclopenta[2,1-b;3,4-b0]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)]

PD-1:

PS-PEG-COOH modified MEH-PPV polymer dots

PD-2:

PSMA modified MEH-PPV polymer dots

PD-3:

PS-PEG-COOH modified and Luc-8 conjugated MEH-PPV polymer dots

PD-4:

PS-PEG-COOH modified and RGD conjugated MEH-PPV polymer dots

PD-5:

PS-PEG-COOH modified, RGD and Luc-8 conjugated MEH-PPV polymer dots

PDTPDTT:

poly[5-octyl-1-(5-(4,4,9,9-tetrakis(4-hexylphenyl)-4,9-dihydro-s-indaceno[1,2-b:5,6-b0]dithiophen-2-yl)thiophen-2-yl)-3-(thiophen-2-yl)-4H–thieno[3,4-c]pyrrole-4, 6(5H)-dione]

PEG-NH2:

Methoxypolyethylene glycol amine 2000

PFBT:

poly(9,9-dioctylfluorene-alt-benzothiadiazole) average Mn 10,000–20,000

PFBTDBT10:

poly[(9,9-dihexylfluorene)-co-2,1,3-benzothiadiazole-co-4,7-di(thiophen-2-yl)-2,1,3-benzothiadiazole]

PFVBT:

poly[9,9-bis(6′-(N,N-dimethylamino)hexyl)fluorenyldivinylenealt-4,7-(2,1,3,-benzothiadiazole)]

PIDT-DBT:

poly{[4,4,9,9-tetrakis(4-(octyloxy)phenyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b′]dithiophene)]-alt-co-[4,7-di(thiophen-2-yl)-2,1,3-benzothiadiazole]}

PLGA-PEG-FOL:

poly(lactic-co-glycolic acid)-poly(ethylene glycol)-folate

PSBTBT:

poly[2,6-(4,40-bis(2-ethylhexyl)dithieno[3,2-b:20,30-d]silole)-alt-4,7(2,1,3-benzothiadiazole)]

PSMA:

poly(styrene-alt-maleic anhydride)

PS-PEG-COOH:

Polystyrene-graft-ethyleneoxide functionalized with carboxyl groups

PtTFPPBr2:

Platinum(II) meso-bis(pentafluorophenyl)bis-(4-bromophenyl)porphyrin

RONS:

Reactive oxygen and nitrogen species

ROS:

Reactive oxygen species

SPNs:

Semiconducting polymer nanoparticles

TC6FQ:

5,8-Bis(5-bromo-4-hexylthiophen-2-yl)-6,7-difluoro-2,3-bis-(3-(hexyloxy)phenyl)quinoxaline

TEOS:

Tetraethyl orthosilicate

TFPP:

meso-bis(pentafluorophenyl)bis-(4-bromophenyl)porphyrin

TPE-TPA-DCM:

2-(2,6-Bis((E)-4-(phenyl(4′-(1,2,2-triphenylvinyl)-[1,1′-biphenyl]-4-yl)amino)styryl)-4H–pyran-4-ylidene)malononitrile

References

  1. Ntziachristos V, Ripoll J, Wang LHV, Weissleder R (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23(3):313–320

    Article  CAS  Google Scholar 

  2. Contag CH, Bachmann MH (2002) Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 4:235–260

    Article  CAS  Google Scholar 

  3. Wagnieres GA, Star WM, Wilson BC (1998) In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem Photobiol 68(5):603–632

    Article  CAS  Google Scholar 

  4. van Dam GM, Themelis G, Crane LM, Harlaar NJ, Pleijhuis RG, Kelder W, Sarantopoulos A, De Jong JS, Arts HJ, Van der Zee AG, Bart J, Low PS, Ntziachristos V (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med 17(10):1315–1319

    Article  Google Scholar 

  5. Vahrmeijer AL, Hutteman M, van der Vorst JR, Van de Velde CJ, Frangioni JV (2013) Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol 10(9):507

    Article  CAS  Google Scholar 

  6. Pecher J, Mecking S (2010) Nanoparticles of conjugated polymers. Chem Rev 110(10):6260–6279

    Article  CAS  Google Scholar 

  7. Tian ZY, Yu JB, Wu CF, Szymanski C, McNeill J (2010) Amplified energy transfer in conjugated polymer nanoparticle tags and sensors. Nanoscale 2(10):1999–2011

    Article  CAS  Google Scholar 

  8. Massey M, Wu M, Conroy EM, Algar WR (2015) Mind your P’s and Q’s: the coming of age of semiconducting polymer dots and semiconductor quantum dots in biological applications. Curr Opin Biotechnol 34:30–34

    Article  CAS  Google Scholar 

  9. Zhu CL, Liu LB, Yang Q, Lv FT, Wang S (2012) Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem Rev 112(8):4687–4735

    Article  CAS  Google Scholar 

  10. Pu K, Chattopadhyay N, Rao J (2016) Recent advances of semiconducting polymer nanoparticles in in vivo molecular imaging. J Control Release 240:312–322

    Article  CAS  Google Scholar 

  11. Wu CF, Chiu DT (2013) Highly fluorescent semiconducting polymer dots for biology and medicine. Angew Chem Int Ed 52(11):3086–3109

    Article  CAS  Google Scholar 

  12. Peng HS, Chiu DT (2015) Soft fluorescent nanomaterials for biological and biomedical imaging. Chem Soc Rev 44(14):4699–4722

    Article  CAS  Google Scholar 

  13. Li K, Liu B (2014) Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem Soc Rev 43(18):6570–6597

    Article  CAS  Google Scholar 

  14. Pu KY, Liu B (2011) Fluorescent conjugated polyelectrolytes for bioimaging. Adv Funct Mater 21:3408–3423

    Article  CAS  Google Scholar 

  15. Feng L, Zhu C, Yuan H, Liu L, Lv F, Wang S (2013) Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications. Chem Soc Rev 42(16):6620–6633

    Article  CAS  Google Scholar 

  16. Chan YH, Wu PJ (2015) Semiconducting polymer nanoparticles as fluorescent probes for biological imaging and sensing. Part Part Syst Charact 32(1):11–18

    Article  CAS  Google Scholar 

  17. Li J, Liu J, Wei CW, Liu B, O'Donnell M, Gao X (2013) Emerging applications of conjugated polymers in molecular imaging. Phys Chem Chem Phys 15(40):17006–17015

    Article  CAS  Google Scholar 

  18. Jin Y, Ye F, Zeigler M, Wu C, Chiu DT (2011) Near-infrared fluorescent dye-doped semiconducting polymer dots. ACS Nano 5(2):1468–1475

    Article  CAS  Google Scholar 

  19. Pu KY, Shuhendler AJ, Valta MP, Cui L, Saar M, Peehl DM, Rao JH (2014) Phosphorylcholine-coated semiconducting polymer nanoparticles as rapid and efficient labeling agents for in vivo cell tracking. Adv Healthc Mater 3(8):1292–1298

    Article  CAS  Google Scholar 

  20. Ding D, Liu J, Feng G, Li K, Hu Y, Liu B (2013) Bright far-red/near-infrared conjugated polymer nanoparticles for in vivo bioimaging. Small 9(18):3093–3102

    Article  CAS  Google Scholar 

  21. Li K, Ding D, Huo D, Pu K, Thao NNP, Hu Y, Li Z, Liu B (2012) Conjugated polymer based nanoparticles as dual-modal probes for targeted in vivo fluorescence and magnetic resonance imaging. Adv Funct Mater 22(15):3107–3115

    Article  CAS  Google Scholar 

  22. Ding D, Li K, Qin W, Zhan R, Hu Y, Liu J, Tang BZ, Liu B (2013) Conjugated polymer amplified far-red/near-infrared fluorescence from nanoparticles with aggregation-induced emission characteristics for targeted in vivo imaging. Adv Healthc Mater 2(3):500–507

    Article  CAS  Google Scholar 

  23. Geng J, Li K, Ding D, Zhang X, Qing W, Liu J, Tang BZ, Liu B (2012) Lipid-PEG-folate encapsulated nanoparticles with aggregation induced emission characteristics: cellular uptake mechanism and two-photon fluorescence imaging. Small 8(23):3655–3663

    Article  CAS  Google Scholar 

  24. Wei Q, Ding D, Liu J, Yuan WZ, Hu Y, Liu B, Tang BZ (2012) Biocompatible nanoparticles with aggregation-induced emission characteristics as far-red/near-infrared fluorescent bioprobes for in vitro and in vivo imaging applications. Adv Funct Mater 22:771–779

    Article  Google Scholar 

  25. Hong G, Zou Y, Antaris AL, Diao S, Wu D, Cheng K, Chen X, Zhang C, Liu B, He Y, Wu JZ, Yuan J, Zhang B, Tao Z, Fukunaga C, Dai H (2014) Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat Commun 5:4206

    CAS  Google Scholar 

  26. Liu HY, Wu PJ, Kuo SY, Chen CP, Chang EH, Wu CY, Chan YH (2015) Quinoxaline-based polymer dots with ultrabright red to near-infrared fluorescence for in vivo biological imaging. J Am Chem Soc 137(32):10420–10429

    Article  CAS  Google Scholar 

  27. Liou SY, Ke CS, Chen JH, Luo YW, Kuo SY, Chen YH, Fang CC, Wu CY, Chiang CM, Chan YH (2016) Tuning the emission of semiconducting polymer dots from green to near-infrared by alternating donor monomers and their applications for in vivo biological imaging. ACS Macro Lett 5(1):154–157

    Article  CAS  Google Scholar 

  28. Ke CS, Fang CC, Yan JY, Tseng PJ, Pyle JR, Chen CP, Lin SY, Chen J, Zhang X, Chan YH (2017) Molecular engineering and design of semiconducting polymer dots with narrow-band, near-infrared emission for in vivo biological imaging. ACS Nano. https://doi.org/10.1021/acsnano.7b00215

  29. Zhu H, Fang Y, Zhen X, Wei N, Gao Y, Luo KQ, Xu C, Duan H, Ding D, Chen P, Pu K (2016) Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice. Chem Sci 7(8):5118

    Article  CAS  Google Scholar 

  30. Xiong LQ, Shuhendler AJ, Rao JH (2012) Self-luminescing BRET-FRET near-infrared dots for in vivo lymph-node mapping and tumour imaging. Nat Commun 3:1193

    Article  Google Scholar 

  31. Xiong LQ, Cao FW, Cao XM, Guo YX, Zhang YM, Cai X (2015) Long-term-stable near-infrared polymer dots with ultrasmall size and narrow-band emission for imaging tumor vasculature in vivo. Bioconjug Chem 26(5):817–821

    Article  CAS  Google Scholar 

  32. Xiong LQ, Guo Y, Zhang Y, Cao F (2016) Highly luminescent and photostable near-infrared fluorescent polymer dots for long-term tumor cell tracking in vivo. J Mater Chem B 4:202–206

    Article  CAS  Google Scholar 

  33. Cao F, Xiong LQ (2016) Folic acid functionalized PFBT fluorescent polymer dots for tumor imaging. Chin J Chem 34:570–575

    Article  CAS  Google Scholar 

  34. Liu J, Li K, Liu B (2015) Far-red/near-infrared conjugated polymer nanoparticles for long-term in situ monitoring of liver tumor growth. Adv Sci 2(5):1500008

    Article  Google Scholar 

  35. Palner M, Pu K, Shao S, Rao J (2015) Semiconducting polymer nanoparticles with persistent near-infrared luminescence for in vivo optical imaging. Angew Chem Int Ed Engl 54(39):11477–11480

    Article  CAS  Google Scholar 

  36. Zhao Q, Li F, Huang W (2015) Fluorescent/phosphorescent dual-emissive conjugated polymer dots for hypoxia bioimaging. Chem Sci 6(3):1825–1831

    Article  CAS  Google Scholar 

  37. Pu K, Shuhendler AJ, Rao J (2013) Semiconducting polymer nanoprobe for in vivo imaging of reactive oxygen and nitrogen species. Angew Chem Int Ed Engl 52(39):10325–10329

    Article  CAS  Google Scholar 

  38. Li DD, Wang JX, Ma Y, Qian HS, Wang D, Wang L, Zhang G, Qiu L, Wang YC, Yang XZ, Donor-Acceptor Conjugated A (2016) Polymer with alternating isoindigo derivative and bithiophene units for near-infrared modulated cancer thermo-chemotherapy. ACS Appl Mater Interfaces 8(30):19312–19320

    Article  CAS  Google Scholar 

  39. Yu JC, Chen L, Zhang YQ, Yao XK, Qian CG, Huang J, Zhu S, Jiang XQ, Shen QD, Gu Z (2014) pH-responsive and near-infrared-emissive polymer nanoparticles for simultaneous delivery, release, and fluorescence tracking of doxorubicin in vivo. Chem Commun 50(36):4699–4702

    Article  CAS  Google Scholar 

  40. Kim S, Lim CK, Na J, Lee YD, Kim K, Choi K, Leary JF, Kwon IC (2010) Conjugated polymer nanoparticles for biomedical in vivo imaging. Chem Commun 46(10):1617

    Article  CAS  Google Scholar 

  41. Jeong K, Park S, Lee YD, Lim C, Kim J, Chung BH, Kwon IC, Park CR, Kim S (2013) Conjugated polymer/photochromophore binary nanococktails: bistable photoswitching of near-infrared fluorescence for in vivo imaging. Adv Mater 25(39):5574–5580

    Article  CAS  Google Scholar 

  42. Dmitriev RI, Borisov SM, Düssmann H, Sun S, Müller BJ, Prehn J, Baklaushev VP, Klimant I, Papkovsky DB (2015) Versatile conjugated polymer nanoparticles for high-resolution O2 imaging in cells and 3D tissue models. ACS Nano 9(5):5275–5288

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqin Xiong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, Y., Xiong, L. (2018). In Vivo Near-Infrared Fluorescence Imaging Based on Polymer Dots. In: Kumar, C. (eds) Nanotechnology Characterization Tools for Biosensing and Medical Diagnosis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56333-5_13

Download citation

Publish with us

Policies and ethics