Skip to main content
  • 1129 Accesses

Abstract

Photoacoustic imaging is a biomedical imaging method that has grown explosively over the last decades. Functional molecular and morphological information of biological molecules, cells, tissues, and organs can be obtained through photoacoustic images. In addition to endogenous light absorbing chromophores, various exogenous contrast agents have been developed to obtain molecular photoacoustic images. Thus, this technology has been soon popular in nanomedicine. This chapter introduces various types of photoacoustic imaging systems and recent trends in photoacoustic image-guided nanomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balas C (2009) Review of biomedical optical imaging – a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis. Meas Sci Technol 20(10):104020

    Article  CAS  Google Scholar 

  2. Kim C, Favazza C, Wang LV (2010) In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths. Chem Rev 110(5):2756–2782

    Article  CAS  Google Scholar 

  3. Beard P (2011) Biomedical photoacoustic imaging. Interface Focus 1:602. https://doi.org/10.1098/rsfs.2011.0028

    Article  Google Scholar 

  4. Wang LV, Hu S (2012) Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335(6075):1458–1462

    Article  CAS  Google Scholar 

  5. Kim J, Park S, Lee C, Kim JY, Kim C (2015) Organic nanostructures for photoacoustic imaging. ChemNanoMat 2:156

    Article  CAS  Google Scholar 

  6. Yao J, Maslov KI, Shi Y, Taber LA, Wang LV (2010) Vivo photoacoustic imaging of transverse blood flow by using Doppler broadening of bandwidth. Opt Lett 35(9):1419–1421

    Article  Google Scholar 

  7. Pramanik M, Wang LV (2009) Thermoacoustic and photoacoustic sensing of temperature. J Biomed Opt 14(5):054024–054027

    Article  Google Scholar 

  8. Lee C, Jeon M, Jeon MY, Kim J, Kim C (2014) In vitro photoacoustic measurement of hemoglobin oxygen saturation using a single pulsed broadband supercontinuum laser source. Appl Opt 53(18):3884–3889

    Article  CAS  Google Scholar 

  9. Kim C, Erpelding TN, Jankovic L, Wang LV (2011) Performance benchmarks of an array-based hand-held photoacoustic probe adapted from a clinical ultrasound system for non-invasive sentinel lymph node imaging. Philos Trans R Soc A Math Phys Eng Sci 369(1955):4644–4650

    Article  Google Scholar 

  10. Kim C, Erpelding TN, Jankovic L, Pashley MD, Wang LV (2010) Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system. Biomed Opt Express 1(1):278–284

    Article  Google Scholar 

  11. Kim J, Park S, Jung Y, Chang S, Park J, Zhang Y, Lovell JF, Kim C (2016) Programmable real-time clinical photoacoustic and ultrasound imaging system. Sci Rep 6:35137

    Article  CAS  Google Scholar 

  12. Heijblom M, Steenbergen W, Manohar S (2015) Clinical photoacoustic breast imaging: the Twente experience. IEEE Pulse 6(3):42–46

    Article  Google Scholar 

  13. Fakhrejahani E, Torii M, Kitai T, Kanao S, Asao Y, Hashizume Y, Mikami Y, Yamaga I, Kataoka M, Sugie T (2015) Clinical report on the first prototype of a photoacoustic tomography system with dual illumination for breast cancer imaging. PLoS One 10(10):e0139113

    Article  CAS  Google Scholar 

  14. Smith AM, Mancini MC, Nie S (2009) Second window for in vivo imaging. Nat Nanotechnol 4(11):710

    Article  CAS  Google Scholar 

  15. Kim C, Song KH, Gao F, Wang LV (2010) Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats – volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging 1. Radiology 255(2):442–450

    Article  Google Scholar 

  16. Wang X, Ku G, Wegiel MA, Bornhop DJ, Stoica G, Wang LV (2004) Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent. Opt Lett 29(7):730–732

    Article  Google Scholar 

  17. Ku G, Wang LV (2005) Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent. Opt Lett 30(5):507–509

    Article  Google Scholar 

  18. Kim C, Cho EC, Chen J, Song KH, Au L, Favazza C, Zhang Q, Cobley CM, Gao F, Xia Y (2010) In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. ACS Nano 4(8):4559–4564

    Article  CAS  Google Scholar 

  19. Srivatsan A, Jenkins SV, Jeon M, Wu Z, Kim C, Chen J, Pandey RK (2014) Gold nanocage-photosensitizer conjugates for dual-modal image-guided enhanced photodynamic therapy. Theranostics 4(2):163–174

    Article  CAS  Google Scholar 

  20. Li W, Cai X, Kim C, Sun G, Zhang Y, Deng R, Yang M, Chen J, Achilefu S, Wang LV (2011) Gold nanocages covered with thermally-responsive polymers for controlled release by high-intensity focused ultrasound. Nanoscale 3(4):1724–1730

    Article  CAS  Google Scholar 

  21. Jeon M, Jenkins S, Oh J, Kim J, Peterson T, Chen J, Kim C (2014) Nonionizing photoacoustic cystography with near-infrared absorbing gold nanostructures as optical-opaque tracers. Nanomedicine 9(9):1377–1388

    Article  CAS  Google Scholar 

  22. De La Zerda A, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, Levi J, Smith BR, Ma T-J, Oralkan O (2008) Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol 3(9):557–562

    Article  CAS  Google Scholar 

  23. Shashkov EV, Everts M, Galanzha EI, Zharov VP (2008) Quantum dots as multimodal photoacoustic and photothermal contrast agents. Nano Lett 8(11):3953–3958

    Article  CAS  Google Scholar 

  24. Zerda Adl, Liu Z, Bodapati S, Teed R, Vaithilingam S, Khuri-Yakub BT, Chen X, Dai H, Gambhir SS (2010) Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano Lett 10(6):2168–2172

    Article  CAS  Google Scholar 

  25. Maslov K, Stoica G, Wang LV (2005) In vivo dark-field reflection-mode photoacoustic microscopy. Opt Lett 30(6):625–627

    Article  Google Scholar 

  26. Jeon M, Kim J, Kim C (2014) Multiplane spectroscopic whole-body photoacoustic imaging of small animals in vivo. Med Biol Eng Comput 54(2):283–294 https://link.springer.com/article/10.1007%2Fs11517-014-1182-6

    Article  Google Scholar 

  27. Hu S, Maslov K, Wang LV (2011) Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed. Opt Lett 36(7):1134–1136

    Article  Google Scholar 

  28. Maslov K, Zhang HF, Hu S, Wang LV (2008) Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt Lett 33:929

    Article  Google Scholar 

  29. Li C, Aguirre A, Gamelin J, Maurudis A, Zhu Q, Wang LV (2010) Real-time photoacoustic tomography of cortical hemodynamics in small animals. J Biomed Opt 15(1):010509

    Article  Google Scholar 

  30. Brecht H-P, Su R, Fronheiser M, Ermilov SA, Conjusteau A, Oraevsky AA (2009) Whole-body three-dimensional optoacoustic tomography system for small animals. J Biomed Opt 14(6):064007–064008

    Article  Google Scholar 

  31. Xia J, Chatni MR, Maslov K, Guo Z, Wang K, Anastasio M, Wang LV (2012) Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo. J Biomed Opt 17(5):0505061–0505063

    Article  Google Scholar 

  32. Luís Deán-Ben X, Razansky D (2014) Adding fifth dimension to optoacoustic imaging: volumetric time-resolved spectrally enriched tomography. Light: Sci Appl 3(1):e137

    Article  CAS  Google Scholar 

  33. Razansky D, Buehler A, Ntziachristos V (2011) Volumetric real-time multispectral optoacoustic tomography of biomarkers. Nat Protoc 6(8):1121–1129

    Article  CAS  Google Scholar 

  34. Kruger RA, Lam RB, Reinecke DR, Del Rio SP, Doyle RP (2010) Photoacoustic angiography of the breast. Med Phys 37(11):6096–6100

    Article  Google Scholar 

  35. Needles A, Heinmiller A, Sun J, Theodoropoulos C, Bates D, Hirson D, Yin M, Foster FS (2013) Development and initial application of a fully integrated photoacoustic micro-ultrasound system. IEEE Trans Ultrason Ferroelectr Freq Control 60(5):888–897

    Article  Google Scholar 

  36. Zafar H, Breathnach A, Subhash HM, Leahy MJ (2015) Linear-array-based photoacoustic imaging of human microcirculation with a range of high frequency transducer probes. J Biomed Opt 20(5):051021

    Article  Google Scholar 

  37. Kim JY, Lee C, Park K, Lim G, Kim C (2015) Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner. Sci Rep 5:7932

    Article  CAS  Google Scholar 

  38. Yao J, Wang L, Yang J-M, Maslov KI, Wong TT, Li L, Huang C-H, Zou J, Wang LV (2015) High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat Methods 12(5):407–410

    Article  CAS  Google Scholar 

  39. Gamelin J, Maurudis A, Aguirre A, Huang F, Guo P, Wang LV, Zhu Q (2009) A real-time photoacoustic tomography system for small animals. Opt Express 17(13):10489–10498

    Article  CAS  Google Scholar 

  40. Lin L, Xia J, Wong TT, Li L, Wang LV (2015) In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography. J Biomed Opt 20(1):016019

    Article  Google Scholar 

  41. Tsyboulski DA, Liopo AV, Su R, Ermilov SA, Bachilo SM, Weisman RB, Oraevsky AA (2014) Enabling in vivo measurements of nanoparticle concentrations with three-dimensional optoacoustic tomography. J Biophotonics 7(8):581–588

    Article  CAS  Google Scholar 

  42. Ermilov S, Su R, Conjusteau A, Anis F, Nadvoretskiy V, Anastasio M, Oraevsky A (2016) Three-dimensional optoacoustic and laser-induced ultrasound tomography system for preclinical research in mice: design and phantom validation. Ultrason Imaging 38(1):77–95

    Article  CAS  Google Scholar 

  43. Dima A, Burton NC, Ntziachristos V (2014) Multispectral optoacoustic tomography at 64, 128, and 256 channels. J Biomed Opt 19(3):036021

    Article  Google Scholar 

  44. Taruttis A, Morscher S, Burton NC, Razansky D, Ntziachristos V (2012) Fast multispectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacokinetics and biodistribution in multiple organs. PLoS One 7(1):e30491

    Article  CAS  Google Scholar 

  45. Ma R, Taruttis A, Ntziachristos V, Razansky D (2009) Multispectral optoacoustic tomography (MSOT) scanner for whole-body small animal imaging. Opt Express 17(24):21414–21426

    Article  CAS  Google Scholar 

  46. Taruttis A, Herzog E, Razansky D, Ntziachristos V (2010) Real-time imaging of cardiovascular dynamics and circulating gold nanorods with multispectral optoacoustic tomography. Opt Express 18(19):19592–19602

    Article  CAS  Google Scholar 

  47. Kruger RA, Kuzmiak CM, Lam RB, Reinecke DR, Del Rio SP, Steed D (2013) Dedicated 3D photoacoustic breast imaging. Med Phys 40(11):113301

    Article  Google Scholar 

  48. Manohar S, Kharine A, van Hespen JC, Steenbergen W, van Leeuwen TG (2005) The Twente Photoacoustic Mammoscope: system overview and performance. Phys Med Biol 50(11):2543

    Article  Google Scholar 

  49. Asao Y, Hashizume Y, Suita T, Nagae K-i, Fukutani K, Sudo Y, Matsushita T, Kobayashi S, Tokiwa M, Yamaga I (2016) Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images. J Biomed Opt 21(11):116009

    Article  Google Scholar 

  50. Fehm TF, Deán-Ben XL, Ford SJ, Razansky D (2016) In vivo whole-body optoacoustic scanner with real-time volumetric imaging capacity. Optica 3(11):1153–1159

    Article  Google Scholar 

  51. Erpelding TN, Kim C, Pramanik M, Jankovic L, Maslov K, Guo Z, Margenthaler JA, Pashley MD, Wang LV (2010) Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system. Radiology 256(1):102–110

    Article  Google Scholar 

  52. Sivasubramanian K, Pramanik M (2016) High frame rate photoacoustic imaging at 7000 frames per second using clinical ultrasound system. Biomed Opt Express 7(2):312–323

    Article  Google Scholar 

  53. Wang D, Wang Y, Wang W, Luo D, Chitgupi U, Geng J, Zhou Y, Wang L, Lovell JF, Xia J (2017) Deep tissue photoacoustic computed tomography with a fast and compact laser system. Biomed Opt Express 8(1):112–123

    Article  Google Scholar 

  54. Sonavane G, Tomoda K, Makino K (2008) Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B: Biointerfaces 66(2):274–280

    Article  CAS  Google Scholar 

  55. Lindner JR (2004) Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discov 3(6):527–533

    Article  CAS  Google Scholar 

  56. Jeon M, Song W, Huynh E, Kim J, Kim J, Helfield BL, Leung BY, Goertz DE, Zheng G, Oh J (2014) Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging. J Biomed Opt 19(1):016005

    Article  CAS  Google Scholar 

  57. Huynh E, Lovell JF, Helfield BL, Jeon M, Kim C, Goertz DE, Wilson BC, Zheng G (2012) Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties. J Am Chem Soc 134(40):16464–16467

    Article  CAS  Google Scholar 

  58. Huynh E, Jin CS, Wilson BC, Zheng G (2014) Aggregate enhanced trimodal porphyrin shell microbubbles for ultrasound, photoacoustic, and fluorescence imaging. Bioconjug Chem 25(4):796–801

    Article  CAS  Google Scholar 

  59. Wilson K, Homan K, Emelianov S (2012) Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nat Commun 3:618

    Article  CAS  Google Scholar 

  60. Hannah A, Luke G, Wilson K, Homan K, Emelianov S (2013) Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging. ACS Nano 8(1):250–259

    Article  CAS  Google Scholar 

  61. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760

    Article  CAS  Google Scholar 

  62. Malam Y, Loizidou M, Seifalian AM (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30(11):592–599

    Article  CAS  Google Scholar 

  63. Beziere N, Lozano N, Nunes A, Salichs J, Queiros D, Kostarelos K, Ntziachristos V (2015) Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT). Biomaterials 37:415–424

    Article  CAS  Google Scholar 

  64. Lozano N, Al-Ahmady ZS, Beziere NS, Ntziachristos V, Kostarelos K (2015) Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent. Int J Pharm 482(1):2–10

    Article  CAS  Google Scholar 

  65. Lovell JF, Jin CS, Huynh E, Jin H, Kim C, Rubinstein JL, Chan WC, Cao W, Wang LV, Zheng G (2011) Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat Mater 10(4):324–332

    Article  CAS  Google Scholar 

  66. Rieffel J, Chen F, Kim J, Chen G, Shao W, Shao S, Chitgupi U, Hernandez R, Graves SA, Nickles RJ (2015) Hexamodal imaging with porphyrin-phospholipid-coated upconversion nanoparticles. Adv Mater 27:1785

    Article  CAS  Google Scholar 

  67. Liu TW, MacDonald TD, Shi J, Wilson BC, Zheng G (2012) Intrinsically copper-64-labeled organic nanoparticles as radiotracers. Angew Chem Int Ed 51(52):13128–13131

    Article  CAS  Google Scholar 

  68. Sreejith S, Joseph J, Lin M, Menon NV, Borah P, Ng HJ, Loong YX, Kang Y, Yu SW-K, Zhao Y (2015) Near-infrared squaraine dye encapsulated micelles for in vivo fluorescence and photoacoustic bimodal imaging. ACS Nano 9(6):5695–5704

    Article  CAS  Google Scholar 

  69. Zhang D, Wu M, Zeng Y, Liao N, Cai Z, Liu G, Liu X, Liu J (2016) Lipid micelles packaged with semiconducting polymer dots as simultaneous MRI/photoacoustic imaging and photodynamic/photothermal dual-modal therapeutic agents for liver cancer. J Mater Chem B 4(4):589–599

    Article  CAS  Google Scholar 

  70. Pu K, Shuhendler AJ, Jokerst JV, Mei J, Gambhir SS, Bao Z, Rao J (2014) Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat Nanotechnol 9:233

    Article  CAS  Google Scholar 

  71. Pu K, Mei J, Jokerst JV, Hong G, Antaris AL, Chattopadhyay N, Shuhendler AJ, Kurosawa T, Zhou Y, Gambhir SS (2015) Diketopyrrolopyrrole-based semiconducting polymer nanoparticles for in vivo photoacoustic imaging. Adv Mater 27(35):5184–5190

    Article  CAS  Google Scholar 

  72. Liu J, Geng J, Liao L-D, Thakor N, Gao X, Liu B (2014) Conjugated polymer nanoparticles for photoacoustic vascular imaging. Polym Chem 5(8):2854–2862

    Article  CAS  Google Scholar 

  73. Kang B, Yu D, Dai Y, Chang S, Chen D, Ding Y (2009) Cancer-cell targeting and photoacoustic therapy using carbon nanotubes as “bomb” agents. Small 5(11):1292–1301

    Article  CAS  Google Scholar 

  74. Zha Z, Deng Z, Li Y, Li C, Wang J, Wang S, Qu E, Dai Z (2013) Biocompatible polypyrrole nanoparticles as a novel organic photoacoustic contrast agent for deep tissue imaging. Nanoscale 5(10):4462–4467

    Article  CAS  Google Scholar 

  75. Hong JY, Yoon H, Jang J (2010) Kinetic study of the formation of polypyrrole nanoparticles in water-soluble polymer/metal cation systems: a light-scattering analysis. Small 6(5):679–686

    Article  CAS  Google Scholar 

  76. Zha Z, Yue X, Ren Q, Dai Z (2013) Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv Mater 25(5):777–782

    Article  CAS  Google Scholar 

  77. Zhang Y, Jeon M, Rich LJ, Hong H, Geng J, Zhang Y, Shi S, Barnhart TE, Alexandridis P, Huizinga JD (2014) Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines. Nat Nanotechnol 9(8):631–638

    Article  CAS  Google Scholar 

  78. Lee C, Kim J, Zhang Y, Jeon M, Liu C, Song L, Lovell JF, Kim C (2015) Dual-color photoacoustic lymph node imaging using nanoformulated naphthalocyanines. Biomaterials 73:142–148

    Article  CAS  Google Scholar 

  79. Fan Q, Cheng K, Hu X, Ma X, Zhang R, Yang M, Lu X, Xing L, Huang W, Gambhir SS (2014) Transferring biomarker into molecular probe: melanin nanoparticle as a naturally active platform for multimodality imaging. J Am Chem Soc 136(43):15185–15194

    Article  CAS  Google Scholar 

  80. Lee MY, Lee C, Jung HS, Jeon M, Kim KS, Yun SH, Kim C, Hahn SK (2015) Biodegradable photonic melanoidin for theranostic applications. ACS Nano 10:822

    Article  CAS  Google Scholar 

  81. Agarwal A, Huang S, O’Donnell M, Day K, Day M, Kotov N, Ashkenazi S (2007) Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J Appl Phys 102(6):064701

    Article  CAS  Google Scholar 

  82. Manohar S, Vaartjes SE, van Hespen JC, Klaase JM, van den Engh FM, Steenbergen W, Van Leeuwen TG (2007) Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics. Opt Express 15(19):12277–12285

    Article  Google Scholar 

  83. Song J, Kim J, Hwang S, Jeon M, Jeong S, Kim C, Kim S (2016) “Smart” gold nanoparticles for photoacoustic imaging: an imaging contrast agent responsive to the cancer microenvironment and signal amplification via pH-induced aggregation. Chem Commun 52(53):8287–8290

    Article  CAS  Google Scholar 

  84. Kim C, Jeon M, Wang L (2011) Nonionizing photoacoustic cystography in vivo. Opt Lett 36(18):3599

    Article  CAS  Google Scholar 

  85. Saini R, Poh CF (2013) Photodynamic therapy: a review and its prospective role in the management of oral potentially malignant disorders. Oral Dis 19(5):440–451

    Article  CAS  Google Scholar 

  86. Chen J, Keltner L, Christophersen J, Zheng F, Krouse M, Singhal A, Wang S-s (2002) New technology for deep light distribution in tissue for phototherapy. Cancer J 8(2):154–163

    Article  Google Scholar 

  87. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23(3):217–228

    Article  Google Scholar 

  88. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120

    Article  CAS  Google Scholar 

  89. Huang P, Lin J, Li W, Rong P, Wang Z, Wang S, Wang X, Sun X, Aronova M, Niu G (2013) Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy. Angew Chem 125(52):14208–14214

    Article  Google Scholar 

  90. Lu W, Melancon MP, Xiong C, Huang Q, Elliott A, Song S, Zhang R, Flores LG, Gelovani JG, Wang LV (2011) Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma. Cancer Res 71(19):6116–6121

    Article  CAS  Google Scholar 

  91. Jing L, Liang X, Deng Z, Feng S, Li X, Huang M, Li C, Dai Z (2014) Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer. Biomaterials 35(22):5814–5821

    Article  CAS  Google Scholar 

  92. Liu H, Chen D, Li L, Liu T, Tan L, Wu X, Tang F (2011) Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew Chem 123(4):921–925

    Article  Google Scholar 

  93. Li M-L, Wang JC, Schwartz JA, Gill-Sharp KL, Stoica G, Wang LV (2009) In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature. J Biomed Opt 14(1):010507

    Article  Google Scholar 

  94. Yang H-W, Liu H-L, Li M-L, Hsi I-W, Fan C-T, Huang C-Y, Lu Y-J, Hua M-Y, Chou H-Y, Liaw J-W (2013) Magnetic gold-nanorod/PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy. Biomaterials 34(22):5651–5660

    Article  CAS  Google Scholar 

  95. Chen Y-S, Frey W, Kim S, Kruizinga P, Homan K, Emelianov S (2011) Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett 11(2):348–354

    Article  CAS  Google Scholar 

  96. Chen Y-S, Frey W, Kim S, Homan K, Kruizinga P, Sokolov K, Emelianov S (2010) Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt Express 18(9):8867–8878

    Article  CAS  Google Scholar 

  97. Tong L, Wei Q, Wei A, Cheng JX (2009) Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem Photobiol 85(1):21–32

    Article  CAS  Google Scholar 

  98. Moon GD, Choi S-W, Cai X, Li W, Cho EC, Jeong U, Wang LV, Xia Y (2011) A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release. J Am Chem Soc 133(13):4762–4765

    Article  CAS  Google Scholar 

  99. Chen J, Glaus C, Laforest R, Zhang Q, Yang M, Gidding M, Welch MJ, Xia Y (2010) Gold nanocages as photothermal transducers for cancer treatment. Small 6(7):811–817

    Article  CAS  Google Scholar 

  100. Everhart JE, Ruhl CE (2009) Burden of digestive diseases in the United States part I: overall and upper gastrointestinal diseases. Gastroenterology 136(2):376–386

    Article  Google Scholar 

  101. Han K, Choi H, Jung D, Park S, Cho K, Joung J, Seo H, Chung J, Lee K (2011) A prospective evaluation of conventional cystography for detection of urine leakage at the vesicourethral anastomosis site after radical prostatectomy based on computed tomography. Clin Radiol 66(3):251–256

    Article  CAS  Google Scholar 

  102. Morgan DE, Nallamala LK, Kenney PJ, Mayo MS, Rue LW (2000) CT cystography: radiographic and clinical predictors of bladder rupture. Am J Roentgenol 174(1):89–95

    Article  CAS  Google Scholar 

  103. Wang Z, Lee CS, Waltzer WC, Liu J, Xie H, Yuan Z, Pan Y (2007) In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography. J Biomed Opt 12(3):034009

    Article  Google Scholar 

  104. Jeon M, Kim J, Kim C (2013) Photoacoustic cystography. J Vis Exp 76:e50340–e50340

    Google Scholar 

  105. Koo J, Jeon M, Oh Y, Kang HW, Kim J, Kim C, Oh J (2012) In vivo non-ionizing photoacoustic mapping of sentinel lymph nodes and bladders with ICG-enhanced carbon nanotubes. Phys Med Biol 57(23):7853

    Article  CAS  Google Scholar 

  106. Park S, Kim J, Jeon M, Song J, Kim C (2014) In vivo photoacoustic and fluorescence cystography using clinically relevant dual modal Indocyanine green. Sensors 14(10):19660–19668

    Article  CAS  Google Scholar 

  107. Su R, Ermilov S, Liopo A, Oraevsky A (2013) Laser optoacoustic tomography: towards new technology for biomedical diagnostics. Nucl Instrum Methods Phys Res Sect A 720:58–61

    Article  CAS  Google Scholar 

  108. Kitai T, Torii M, Sugie T, Kanao S, Mikami Y, Shiina T, Toi M (2014) Photoacoustic mammography: initial clinical results. Breast Cancer 21(2):146–153

    Article  Google Scholar 

  109. Dogra VS, Chinni BK, Valluru KS, Moalem J, Giampoli EJ, Evans K, Rao NA (2014) Preliminary results of ex vivo multispectral photoacoustic imaging in the management of thyroid cancer. Am J Roentgenol 202(6):W552–W558

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chulhong Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, J., Kim, C. (2018). Photoacoustic Imaging Tools for Nanomedicine. In: Kumar, C. (eds) Nanotechnology Characterization Tools for Biosensing and Medical Diagnosis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56333-5_11

Download citation

Publish with us

Policies and ethics