Advertisement

In Situ Characterization Tools for Bi2Te3 Topological Insulator Nanomaterials

  • P. Ngabonziza
  • M. P. Stehno
  • G. Koster
  • A. Brinkman
Chapter

Abstract

In situ characterization of topological insulator nanomaterials using several, complementary surface analysis techniques enables to investigate topological surface states without exposing the samples to ambient conditions. Adsorbants from exposure to air and other ex situ contaminations result in notable changes in the bulk and surface state properties of topological insulators. In this chapter, we describe recent developments in the in situ characterization of topological insulator nanomaterials. Extensive studies on individual samples are made possible by connecting the deposition chamber to a large number of surface analysis tools and by using a vacuum suitcase technology which allows sample transfer in ultra-high vacuum conditions between vacuum systems worldwide.

Notes

Acknowledgments

We thank Dominic Post and Mark Golden for their support in the development of the vacuum suitcase. This work was financially supported by the Dutch Foundation for Fundamental Research on Matter (FOM), the Netherlands Organization for Scientific Research (NWO), and by the European Research Council (ERC).

References

  1. 1.
    Kane CL, Mele EJ (2005) Z2 topological order and the quantum spin hall effect. Phys Rev Lett 95:146802CrossRefGoogle Scholar
  2. 2.
    Zhang H, Liu C-X, Qi X-L, Dai X, Fang Z, Zhang S-C (2009) Topological insulators in Bi2Te3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat Phys 5:438–442CrossRefGoogle Scholar
  3. 3.
    Fu L, Kane CL (2007) Topological insulators with inversion symmetry. Phys Rev B 76:045302CrossRefGoogle Scholar
  4. 4.
    Hsieh D, Qian D, Wray L, Xia Y, Hor YS, Cava RJ, Hasan MZ (2008) A topological Dirac insulator in a quantum spin hall phase. Nature (London) 452:970–974CrossRefGoogle Scholar
  5. 5.
    Hsieh D, Xia Y, Wray L, Qian D, Pal A, Dil JH, Meier F, Osterwalder J, Bihlmayer G, Kane CL, Hor YS, Cava RJ, Hasan MZ (2009) Observation of unconventional quantum spin textures in topological insulators. Science 323(5916):919–922CrossRefGoogle Scholar
  6. 6.
    Liu C-X, Qi X-L, Zhang H, Dai X, Fang Z, Zhang S-C (2010) Model Hamiltonian for topological insulators. Phys Rev B 82:045122CrossRefGoogle Scholar
  7. 7.
    Xi Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor YS, Cava RJ, Hasan MZ (2009) Nat Phys 5:398–402CrossRefGoogle Scholar
  8. 8.
    Chen YL, Analytis JG, Chu J-H, Liu ZK, Mo S-K, Qi XL, Zhang HJ, Lu DH, Dai X, Fang Z, Zhang SC, Fisher IR, Hussain Z, Shen Z-X (2009) Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325(5937):178–181CrossRefGoogle Scholar
  9. 9.
    Hsieh D, Qian D, Wray L, Xia Y, Hor YS, Cava RJ, Hasan MZ (2009) A tunable topological insulator in the spin helical Dirac transport regime. Nature (London) 460:1101–1105CrossRefGoogle Scholar
  10. 10.
    Fu L, Kane CL (2008) Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys Rev Lett 100:096407CrossRefGoogle Scholar
  11. 11.
    Qi X-L, Li R, Zang J, Zhang S-C (2009) Inducing a magnetic monopole with topological surface states. Science 323(5918):1184–1187CrossRefGoogle Scholar
  12. 12.
    Ando Y (2013) Topological insulator materials. J Phys Soc Jpn 82(10):102001, and references thereinCrossRefGoogle Scholar
  13. 13.
    He L, Xiu F, Yu X, Teague M, Jiang W, Fan Y, Kou X, Lang M, Wang Y, Huang G, Yeh N-C, Wang KL (2012) Surface-dominated conduction in a 6 nm thick Bi2Se3 thin film. Nano Lett 12(3):1486–1490CrossRefGoogle Scholar
  14. 14.
    Taskin AA, Sasaki S, Segawa K, Ando Y (2012) Manifestation of topological protection in transport properties of epitaxial Bi2Se3 thin films. Phys Rev Lett 109(6):066803CrossRefGoogle Scholar
  15. 15.
    He L, Kou X, Wang KL (2013) Review of 3D topological insulator thin-film growth by molecular beam epitaxy and potential applications. Phys Status Solidi Rapid Res Lett 7(1–2):50–63, and reference thereinCrossRefGoogle Scholar
  16. 16.
    Ngabonziza P, Heimbuch R, de Jong N, Klaassen RA, Stehno MP, Snelder M, Solmaz A, Ramankutty SV, Frantzeskakis E, van Heumen E, Koster G, Golden MS, Zandvliet HJW, Brinkman A (2015) In-situ spectroscopy of intrinsic Bi2Te3 topological insulator thin films and impact of extrinsic defects. Phys Rev B 92(3):035405CrossRefGoogle Scholar
  17. 17.
    Hoefer K, Becker C, Rata D, Swanson J, Thalmeier P, Tjeng LH (2014) Intrinsic conduction through topological surface states of insulating Bi2Te3. Proc Natl Acad Sci USA 111(42):14979–14984CrossRefGoogle Scholar
  18. 18.
    Ngabonziza P, Stehno MP, Myoren H, Neumann VA, Koster G, Brinkman A (2016) Gate-tunable transport properties of in-situ capped Bi2Te3 topological insulator thin films. Adv Electron Mater 2:1600157CrossRefGoogle Scholar
  19. 19.
    Li Y, Wang G, Zhu X, Liu M, Ye C, Chen X, Wang Y, He K, Wang L, Ma X, Zhang H, Dai X, Fang Z, Xie X, Liu Y, Qi X, Jia J, Zhang S, Xue Q (2010) Intrinsic topological insulator Bi2Te3 thin films on Si and their thickness limit. Adv Mater 22(36):4002–4007CrossRefGoogle Scholar
  20. 20.
    Wang G, Zhu X, Sun Y, Li Y, Zhang T, Wen J, Chen X, He K, Wang L, Ma X, Jia J, Zhang SB, Xue Q (2011) Topological insulator thin films of Bi2Te3 with controlled electronic structure. Adv Mater 23(26):2929–2932CrossRefGoogle Scholar
  21. 21.
    Brüne C, Liu CX, Novik EG, Hankiewicz EM, Buhmann H, Chen YL, Qi XL, Shen ZX, Zhang SC, Molenkamp LW (2011) Quantum hall effect from the topological surface states of strained bulk HgTe. Phys Rev Lett 106(12):126803CrossRefGoogle Scholar
  22. 22.
    Zhang G, Qin H, Chen J, He X, Lu L, Li Y, Wu K (2011) Growth of topological insulator Bi2Se3 thin films on SrTiO3 with large tunability in chemical potential. Adv Funct Mater 21:2351–2355CrossRefGoogle Scholar
  23. 23.
    Lanius M, Kampmeier J, Weyrich C, Koölling S, Schall M, Schüffelgen P, Neumann E, Luysberg M, Mussler G, Koenraad PM, Schäpers T, Grützmacher D (2016) P–N junctions in ultrathin topological insulator Sb2Te3/Bi2Te3 heterostructures grown by molecular beam epitaxy. Cryst Growth Des 16:2057–2061CrossRefGoogle Scholar
  24. 24.
    Eschbach M, Młyńczak E, Kellner J, Kampmeier J, Lanius M, Neumann E, Weyrich C, Gehlmann M, Gospodaric P, Döring S, Mussler G, Demarina N, Luysberg M, Bihlmayer G, Schäpers T, Plucinski L, Blügel S, Morgenstern M, Schneider CM, Grützmacher D (2015) Realization of a vertical topological p–n junction in epitaxial Sb2Te3/Bi2Te3 heterostructures. Nat Commun 6:8816CrossRefGoogle Scholar
  25. 25.
    Jiang Z, Chang C-Z, Tang C, Zheng J-G, Moodera JS, Shi J (2016) Structural and proximity-induced ferromagnetic properties of topological insulator-magnetic insulator heterostructures. AIP Adv 6:055809CrossRefGoogle Scholar
  26. 26.
    Sertore D, Michelato P, Monaco L, Manini P, Siviero F (2011) Use of NEG pums to ensure long term performance of high quantum efficiency photocatodes. In: Proceedings of IPAC, San SebastiánGoogle Scholar
  27. 27.
    Firpo G, Pozzo A (2004) New getter pump for ultrahigh vacuum systems and transportable enclosure. Rev Sci Instrum 75:4828CrossRefGoogle Scholar
  28. 28.
    Saes group, https://www.saesgetters.com/products/nextorr-pumpsNEXTorr: The ideal pump for your portable vacuum case, 2016
  29. 29.
    Park CD, Chung SM, Manini P (2011) Combination of compact nonevaporable getter and small ion pumps for ultrahigh vacuum systems. J Vac Sci Technol A 29:011012CrossRefGoogle Scholar
  30. 30.
    Scherer DR, Fenner DB, Hensley JM (2012) Characterization of alkali metal dispensers and non-evaporable getter pumps in ultrahigh vacuum systems for cold atomic sensors. J Vac Sci Technol A 30:061602CrossRefGoogle Scholar
  31. 31.
    Larsen PK, Dobson PJ (eds) (1988) Reflection high-energy electron diffraction and reflection electron imaging of surfaces. Plenum Press, New YorkGoogle Scholar
  32. 32.
    Braun W (1999) Applied RHEED: reflection high-energy electron diffraction during crystal growth. Springer, BerlinGoogle Scholar
  33. 33.
    Peng LM, Dudarev SL, Whelan MJ (2004) High-energy electron diffraction and microscopy. Oxford University Press, Oxford, UKGoogle Scholar
  34. 34.
    Neave JH, Joyce BA, Dobson PJ, Norton N (1983) Dynamics of film growth GaAs by MBE from RHEED observations. Appl Phys A 31:1–2CrossRefGoogle Scholar
  35. 35.
    Fornari CI, Rappl PHO, Morelhão SL, Abramof E (2016) Structural properties of Bi2Te3 topological insulator thin films grown by molecular beam epitaxy on (111) BaF2 substrates. J Appl Phys 119:165303CrossRefGoogle Scholar
  36. 36.
    Hoefer K, Becker C, Wirth S, Tjeng LH (2015) Protective capping of topological surface states of intrinsically insulating Bi2Te3. AIP Adv 5:097139CrossRefGoogle Scholar
  37. 37.
    Roy A, Guchhait S, Sonde S, Dey R, Pramanik T, Rai A, Movva HCP, Colombo L, Banerjee SK (2013) Two-dimensional weak anti-localization in Bi2Te3 thin film grown on Si(111)-(7×7) surface by molecular beam epitaxy. Appl Phys Lett 102:163118CrossRefGoogle Scholar
  38. 38.
    Rapacz R, Balin K, Wojtyniak M, Szade J (2015) Morphology and local conductance of single crystalline Bi2Te3 thin films on mica. Nanoscale 7:16034CrossRefGoogle Scholar
  39. 39.
    Wang K, Liu Y, Wang W, Meyer N, Bao LH, He L, Lang MR, Chen ZG, Che XY, Post K, Zou J, Basov DN, Wang KL, Xiu F (2013) High-quality Bi2Te3 thin films grown on mica substrates for potential optoelectronic applications. Appl Phys Lett 103:031605CrossRefGoogle Scholar
  40. 40.
    Xie M-H, Guo X, Xu Z-J, Ho W-K (2013) Molecular-beam epitaxy of topological insulator Bi2Se3 (111) and (221) thin film. Chin Phys B 22(6):068101, and references thereinCrossRefGoogle Scholar
  41. 41.
    He L, Xiu F, Wang Y, Fedorov AV, Huang G, Kou X, Lang M, Beyermann WP, Zou J, Wang KL (2011) Epitaxial growth of Bi2Se3 topological insulator thin films on Si (111). J Appl Phys 109:103702CrossRefGoogle Scholar
  42. 42.
    Kou XF, He L, Xiu FX, Lang MR, Liao ZM, Wang Y, Fedorov AV, Yu XX, Tang JS, Huang G, Jiang XW, Zhu JF, Zou J, Wang KL (2011) Epitaxial growth of high mobility Bi2Se3 thin films on CdS. Appl Phys Lett 98:242102CrossRefGoogle Scholar
  43. 43.
    He X, Guan T, Wang X, Feng B, Cheng P, Chen L, Li Y, Wu K (2012) Highly tunable electron transport in epitaxial topological insulator (Bi1−xSbx)2Te3 thin films. Appl Phys Lett 101:123111CrossRefGoogle Scholar
  44. 44.
    Seah MP, Dench WA (1979) Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf Interface Anal 1(1):2–11CrossRefGoogle Scholar
  45. 45.
    van der Heide P (2012) X-ray photoelectron spectroscopy: an introduction to principles and practices. Wiley, HobokenGoogle Scholar
  46. 46.
    Carlson T (1975) Photoelectron spectroscopy. Annu Rev Phys Chem 26:211–234CrossRefGoogle Scholar
  47. 47.
    Yashina LV, Sánchez-Barriga J, Scholz MR, Volykhov AA, Sirotina AP, Neudachina VS, Tamm ME, Varykhalov A, Marchenko D, Springholz G, Bauer G, Knop-Gericke A, Rader O (2013) Negligible surface reactivity of topological insulators Bi2Se3 and Bi2Te3 towards oxygen and water. ACS Nano 7(6):5181–5191CrossRefGoogle Scholar
  48. 48.
    Thomas CR, Vallon MK, Frith MG, Sezen H, Kushwaha SK, Cava RJ, Schwartz J, Bernasek SL (2016) Surface oxidation of Bi2(Te,Se)3 topological insulators depends on cleavage accuracy. Chem Mater 28:35–39CrossRefGoogle Scholar
  49. 49.
    Kong D, Cha JJ, Lai K, Peng H, Analytis JG, Meister S, Chen Y, Zhang H, Fisher IR, Shen Z, Cui Y (2011) Rapid surface oxidation as a source of surface degradation factor for Bi2Se3. ACS Nano 5(6):4698–4703CrossRefGoogle Scholar
  50. 50.
    Guo J, Qiu F, Zhang Y, Deng H, Hu G, Li X, Yu G, Dai N (2013) Surface oxidation properties in a topological insulator Bi2Te3 film. Chin Phys Lett 30(10):106801CrossRefGoogle Scholar
  51. 51.
    Meng L, Meng H, Gong W, Liu W, Zhang Z (2011) Growth and characterization of Bi2Se3 thin films by pulsed laser deposition using alloy target. Thin Solid Films 519:7627–7631CrossRefGoogle Scholar
  52. 52.
    Golyashov VA, Kokh KA, Makarenko SV, Romanyuk KN, Prosvirin IP, Kalinkin AV, Tereshchenko OE, Kozhukhov AS, Sheglov DV, Eremeev SV, Borisova SD, Chulkov EV (2012) Inertness and degradation of (0001) surface of Bi2Se3 topological insulator. J Appl Phys 112:113702CrossRefGoogle Scholar
  53. 53.
    Bando H, Koizumi K, Oikawa Y, Daikohara K, Kulbachinskii VA, Ozaki H (2000) The time-dependent process of oxidation of the surface of Bi2Te3 studied by x-ray photoelectron spectroscopy. J Phys Condens Matter 12:5607–5616CrossRefGoogle Scholar
  54. 54.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1995) Handbook of X-ray photoelectron spectroscopy. Physical Electronics, Inc., Eden PrairieGoogle Scholar
  55. 55.
    Shirley DA (1972) High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys Rev B 5:4709CrossRefGoogle Scholar
  56. 56.
    He J, Zhang Q (2007) An exact calculation of the Voigt spectral line profile in spectroscopy. J Opt A Pure Appl Opt 9:565–568CrossRefGoogle Scholar
  57. 57.
    Luque JM, Calzada MD, Saez M (2005) A new procedure for obtaining the Voigt function dependent upon the complex error function. J Quant Spectrosc Radiat Transf 94:151–161CrossRefGoogle Scholar
  58. 58.
    Seah MP, Gilmore IS, Spencer SJ, Quantitative XPS (2001) Analysis of X-ray photoelectron intensities from elemental data in a digital photoelectron database. J Electron Spectrosc Relat Phenom 120(1–3):93–111CrossRefGoogle Scholar
  59. 59.
    Damascelli A (2003) Angle-resolved photoemission studies of the cuprate superconductors. Rev Modern Phys 75(2):473–541CrossRefGoogle Scholar
  60. 60.
    Lee WS, Vishik IM, Lu DH, Shen Z-X (2009) A brief update of angle-resolved photoemission spectroscopy on a correlated electron system. J Phys Condens Matter 21(16):164217CrossRefGoogle Scholar
  61. 61.
    Damascelli A (2004) Probing the electronic structure of complex systems by ARPES. Phys Scr T109:61–74CrossRefGoogle Scholar
  62. 62.
    Xie Z, He S, Chen C, Feng Y, Yi H, Liang A, Zhao L, Mou D, He J, Peng Y, Liu X, Liu Y, Liu G, Dong X, Yu L, Zhang J, Zhang S, Wang Z, Zhang F, Yang F, Peng Q, Wang X, Chen C, Xu Z, Zhou XJ (2014) Orbital-selective spin texture and its manipulation in a topological insulator. Nat Commun 5:3382Google Scholar
  63. 63.
    Zhang J, Chang CZ, Zhang Z, Wen J, Feng X, Li K, Liu M, He K, Wang L, Chen X, Xue QK, Ma X, Wang Y (2011) Band structure engineering in (Bi1−xSbx)2Te3 ternary topological insulators. Nat Commun 2:574CrossRefGoogle Scholar
  64. 64.
    Souma S, Kosaka K, Sato T, Komatsu M, Takayama A, Takahashi T, Kriener M, Segawa K, Ando Y (2009) Direct measurement of the out-of-plane spin texture in the Dirac-cone surface state of a topological insulator. Phys Rev Lett 106:216803CrossRefGoogle Scholar
  65. 65.
    Frantzeskakis E, de Jong N, Zwartsenberg B, Bay TV, Huang YK, Ramankutty SV, Tytarenko A, Wu D, Pan Y, Hollanders S, Radovic M, Plumb NC, Xu N, Shi M, Lupulescu C, Arion T, Ovsyannikov R, Varykhalov A, Eberhardt W, de Visser A, van Heumen E, Golden MS (2015) Dirac states with knobs on: interplay of external parameters and the surface electronic properties of three-dimensional topological insulators. Phys Rev B 91:205134CrossRefGoogle Scholar
  66. 66.
    Lu D, Vishik IM, Yi M, Chen Y, Moore RG, Shen Z-X (2012) Angle-resolved photoemission studies of quantum materials. Ann Rev Condens Matter Phys 3:129–167CrossRefGoogle Scholar
  67. 67.
    Hsieh D, Xia Y, Qian D, Wray L, Meier F, Dil JH, Osterwalder J, Patthey L, Fedorov AV, Lin H, Bansil A, Grauer D, Hor YS, Cava RJ, Hasan MZ (2009) Observation of time-reversal-protected single-Dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3. Phys Rev Lett 103:146401CrossRefGoogle Scholar
  68. 68.
    Nishide A, Taskin AA, Takeichi Y, Okuda T, Kakizaki A, Hirahara T, Nakatsuji K, Komori F, Ando Y, Matsuda I (2010) Direct mapping of the spin-filtered surface bands of a three-dimensional quantum spin Hall insulator. Phys Rev B 81:041309(R)CrossRefGoogle Scholar
  69. 69.
    Zhang Y, He K, Chang CZ, Song CL, Wang LL, Chen X, Jia JF, Fan Z, Dai X, Shan WY, Shen SQ, Niu Q, Qi XL, Zhang SC, Ma XC, Xue QK (2010) Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat Phys 6:584–588CrossRefGoogle Scholar
  70. 70.
    Eibl O, Nielsch K, Peranio N, Völklein F (2015) Thermoelectric Bi2Te3 nanomaterials. Wiley-VCH Verlag GmBh & Co. KGaA, WeinheimGoogle Scholar
  71. 71.
    Lee JJ, Schmitt FT, Moore RG, Vishik IM, Ma Y, Shen ZX (2012) Appl Phys Lett 101:013118CrossRefGoogle Scholar
  72. 72.
    Kordyuk AA, Kim TK, Zabolotnyy VB, Evtushinsky DV, Bauch M, Hess C, Büchner B, Berger H, Borisenko SV (2011) Photoemission-induced gating of topological insulators. Phys Rev B 83:081303CrossRefGoogle Scholar
  73. 73.
    Olbrich P, Zoth C, Vierling P, Dantscher K-M, Budkin GV, Tarasenko SA, Bel'kov VV, Kozlov DA, Kvon ZD, Mikhailov NN, Dvoretsky S, Ganichev SD (2013) Giant photocurrents in a Dirac fermion system at cyclotron resonance. Phys Rev B 87:235439CrossRefGoogle Scholar
  74. 74.
    Wang X, Bian G, Miller T, Chiang T-C (2012) Fragility of surface states and robustness of topological order in Bi2Te3 against oxidation. Phys Rev Lett 108:096404CrossRefGoogle Scholar
  75. 75.
    Taskin AA, Ren Z, Sasaki S, Segawa K, Ando Y (2011) Observation of Dirac holes and electrons in a topological insulator. Phys Rev Lett 107:016801CrossRefGoogle Scholar
  76. 76.
    Alpichshev Z, Analytis JG, Chu J-H, Fisher IR, Chen YL, Shen ZX, Fang A, Kapitulnik A (2010) STM imaging of electronic waves on the surface of Bi2Te3: topologically protected surface states and hexagonal warping effects. Phys Rev Lett 104:016401CrossRefGoogle Scholar
  77. 77.
    Seo J, Roushan P, Beidenkopf H, Hor YS, Cava RJ, Yazdani A (2010) Transmission of topological surface states through surface barriers. Nature 466:343–346CrossRefGoogle Scholar
  78. 78.
    Simmons JG (1963) Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J Appl Phys 34:1793CrossRefGoogle Scholar
  79. 79.
    Julian Chen C (2007) Introduction to scanning tunneling microscopy, 2nd edn. Oxford University Press, Oxford, UKCrossRefGoogle Scholar
  80. 80.
    Binnig G, Rohrer H (1987) Scanning tunneling microscopy: from birth to adolescence. Rev Modern Phys 59(3):615CrossRefGoogle Scholar
  81. 81.
    Wiesendanger R (1994) Scanning probe microscopy and spectroscopy: methods and applications. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  82. 82.
    Roushan P, Seo J, Parker CV, Hor YS, Hsieh D, Qian D, Richardella A, Hasan MZ, Cava RJ, Yazdan A (2009) Topological surface states protected from backscattering by chiral spin texture. Nature 460:1106–1110CrossRefGoogle Scholar
  83. 83.
    Cheng P, Song C, Zhang T, Zhang Y, Wang Y, Jia J-F, Wang J, Wang Y, Zhu B-F, Chen X, Ma X, He K, Wang L, Dai X, Fang Z, Xie X, Qi X-L, Liu C-X, Zhang S-C, Xue Q-K (2010) Landau quantization of topological surface states in Bi2Se3. Phys Rev Lett 105:076801CrossRefGoogle Scholar
  84. 84.
    Hanaguri T, Igarashi K, Kawamura M, Takagi H, Sasagawa T (2010) Momentum resolved Landau-level spectroscopy of Dirac surface state in Bi2Se3. Phys Rev B 82:081305(R)CrossRefGoogle Scholar
  85. 85.
    Jiang Y, Wang Y, Chen M, Li Z, Song C, He K, Wang L, Chen X, Ma X, Xue Q-K (2010) Landau quantization and the thickness limit of topological insulator thin films of Sb2Te3. Phys Rev Lett 108:016401CrossRefGoogle Scholar
  86. 86.
    Alpichshev Z, Biswas RR, Balatsky AV, Analytis JG, Chu J-H, Fisher IR, Kapitulnik A (2012) STM imaging of impurity resonances on Bi2Se3. Phys Rev Lett 108:206402CrossRefGoogle Scholar
  87. 87.
    Honolka J, Khajetoorians AA, Sessi V, Wehling TO, Stepanow S, Mi J-L, Iversen BB, Schlenk T, Wiebe J, Brookes NB, Lichtenstein AI, Hofmann P, Kern K, Wiesendanger R (2012) In-plane magnetic anisotropy of Fe atoms on Bi2Se3 (111). Phys Rev Lett 108:256811CrossRefGoogle Scholar
  88. 88.
    Beidenkopf H, Roushan P, Seo J, Gorman L, Drozdov I, San Hor Y, Cava RJ, Yazdani A (2011) Spatial fluctuations of helical Dirac fermions on the surface of topological insulators. Nat Phys 7:939–943CrossRefGoogle Scholar
  89. 89.
    Hor YS, Roushan P, Beidenkopf H, Seo J, Qu D, Checkelsky JG, Wray LA, Hsieh D, Xia Y, Xu S-Y, Qian D, Hasan MZ, Ong NP, Yazdani A, Cava RJ (2010) Phys Rev Lett 81:195203Google Scholar
  90. 90.
    Zahid F, Lake R (2010) Thermoelectric properties of Bi2Te3 atomic quintuple thin films. Appl Phys Lett 97:212102CrossRefGoogle Scholar
  91. 91.
    Chen M, Peng J-P, Zhang H-M, Wang L-L, He K, Ma X-C, Xue Q-K (2012) Molecular beam epitaxy of bilayer Bi(111) films on topological insulator Bi2Te3: a scanning tunneling microscopy study. Appl Phys Lett 101:081603CrossRefGoogle Scholar
  92. 92.
    Zhang T, Cheng P, Chen X, Jia JF, Ma X, He K, Wang L, Zhang H, Dai X, Fang Z, Xie X, Xue Q-K (2009) Experimental demonstration of topological surface states protected by time-reversal symmetry. Phys Rev Lett 103:266803CrossRefGoogle Scholar
  93. 93.
    Liang F (2009) Hexagonal warping effects in the surface states of the topological insulator Bi2Te3. Phys Rev Lett 103:266801CrossRefGoogle Scholar
  94. 94.
    Adroguer P, Carpentier D, Cayssol J, Orignac E (2012) Diffusion at the surface of topological insulators. New J Phys 14:103027CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • P. Ngabonziza
    • 1
    • 2
  • M. P. Stehno
    • 1
  • G. Koster
    • 1
  • A. Brinkman
    • 1
  1. 1.Faculty of Science and Technology and MESA+Institute for Nanotechnology, University of TwenteEnschedeThe Netherlands
  2. 2.Department of PhysicsUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations