In Situ X-Ray Absorption Spectroscopy to Study Growth of Nanoparticles

  • Chandrani Nayak
  • S. N. Jha
  • Dibyendu Bhattacharyya
Chapter

Abstract

Please check if identified head levels are okay.

References

  1. 1.
    Schmid G (ed) (2004) Nanoparticles: from theory to application. Wiley-VCH, WeinheimGoogle Scholar
  2. 2.
    Kohler M, Fritzsche W (2004) Nanotechnology: an introduction to nanostructuring techniques. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  3. 3.
    de Mello Donegá C (ed) (2014) Nanoparticles: workhorses of nanoscience. Springer, Berlin/HeidelbergGoogle Scholar
  4. 4.
    Koziej D (2016) Revealing complexity of nanoparticle synthesis in solution by in-situ hard X-ray spectroscopy-today and beyond. Chem Mater 28:2478–2490CrossRefGoogle Scholar
  5. 5.
    Frahm R, Barbee TW Jr, Warburton W (1991) In situ structural study of thin-film growth by quick-scanning x-ray-absorption spectroscopy. Phys Rev B 44:2822–2825CrossRefGoogle Scholar
  6. 6.
    Newton MA, Dent AJ, Evans J (2002) Bringing time resolution to EXAFS: recent developments and application to chemical systems. Chem Soc Rev 31:83–95CrossRefGoogle Scholar
  7. 7.
    Harada M, Inada Y (2009) In situ time-resolved XAFS studies of metal particle formation by photoreduction in polymer solutions. Langmuir 25:6049–6061CrossRefGoogle Scholar
  8. 8.
    Makimura Y, Sasaki T, Oka H, Okuda C, Nonaka T, Nishimura YF, Kawauchi S, Takeuchi Y (2016) Studying the charging process of a lithium-ion battery toward 10 V by in situ X-ray absorption and diffraction: lithium insertion/extraction with side reactions at positive and negative electrodes. J Electrochem Soc 163:A1450–A1456CrossRefGoogle Scholar
  9. 9.
    Mizutania T, Ogawa S, Murai T, Nameki H, Yoshida T, Yagi S (2015) In situ UV–vis investigation of growth of gold nanoparticles prepared by solution plasma sputtering in NaCl solution. Appl Surf Sci 354:397–400CrossRefGoogle Scholar
  10. 10.
    Amendola V, Meneghetti M (2009) Size evaluation of gold nanoparticles by UV-vis spectroscopy. J Phys Chem C 113:4277–4285CrossRefGoogle Scholar
  11. 11.
    Zheng H, Smith RK, Jun YW, Kisielowski C, Dahmen U, Alivisatos AP (2009) Observation of single colloidal platinum nanocrystal growth trajectories. Science 324:1309–1312CrossRefGoogle Scholar
  12. 12.
    Simonsen SB, Chorkendorff I, Dahl S, Skoglundh M, Sehested J, Helveg SJ (2010) Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM. J Am Chem Soc 132:7968–7975CrossRefGoogle Scholar
  13. 13.
    Jason W, Helveg S, Ullmann S, Peng Z, Bell AT (2016) Growth of encapsulating carbon on supported Pt nanoparticles studied by in situ TEM. J Catal 338:295–304CrossRefGoogle Scholar
  14. 14.
    Hsieh T-H, Chen J-Y, Huang C-W, Wu W-W (2016) Observing growth of nanostructured ZnO in liquid. Chem Mater 28:4507–4511CrossRefGoogle Scholar
  15. 15.
    DeYoreo JJ (2016) In-situ liquid phase TEM observations of nucleation and growth processes. Prog Cryst Growth Charact Mater 62:69–88CrossRefGoogle Scholar
  16. 16.
    Tay SER, Goode AE, Nelson Weker J, Cruickshank AA, Heutz S, Porter AE, Ryan MP, Toney MF (2016) Direct in situ observation of ZnO nucleation and growth via transmission X-ray microscopy. Nanoscale 8:1849–1853CrossRefGoogle Scholar
  17. 17.
    Abecassis B, Testard F, Spalla O, Barboux P (2007) Probing in situ the nucleation and growth of gold nanoparticles by small-angle X-ray scattering. Nano Lett 7:1723–1727CrossRefGoogle Scholar
  18. 18.
    Caetano BL, Santilli CV, Meneau F, Briois V, Pulcinelli SH (2011) In situ and simultaneous Uv-vis/SAXS and Uv-vis/XAFS time-resolved monitoring of ZnO quantum dots formation and growth. J Phys Chem C 115:4404–4412CrossRefGoogle Scholar
  19. 19.
    Polte J, Ahner TT, Delissen F, Sokolov S, Emmerling F, Thünemann AF, Kraehnert R (2010) Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. J Am Chem Soc 132:1296–1301CrossRefGoogle Scholar
  20. 20.
    Lin CS, Khan MR, Lin SD (2006) The preparation of Pt nanoparticles by methanol and citrate. J Colloid Interface Sci 299:678–685CrossRefGoogle Scholar
  21. 21.
    Ohyama J, Teramura K, Higuchi Y, Shishido T, Hitomi Y, Kato K, Tanida H, Uruga T, Tanaka T (2011) In situ observation of nucleation and growth process of gold nanoparticles by quick XAFS spectroscopy. ChemPhysChem 12:127–131CrossRefGoogle Scholar
  22. 22.
    Ma J, Zou Y, Jiang Z, Huang W, Li J, Wu G, Huang Y, Xu H (2013) An in situ XAFS study – the formation mechanism of gold nanoparticles from X-ray-irradiated ionic liquid. Phys Chem Chem Phys 15:11904–11908CrossRefGoogle Scholar
  23. 23.
    Harada M, Kamigaito Y (2012) Nucleation and aggregative growth process of platinum nanoparticles studied by in situ quick XAFS spectroscopy. Langmuir 28:2415–2428CrossRefGoogle Scholar
  24. 24.
    Harada M, Inada Y, Nomura M (2009) In situ time-resolved XAFS analysis of silver particle formation by photoreduction in polymer solutions. J Colloid Interface Sci 337:427–438CrossRefGoogle Scholar
  25. 25.
    Harada M, Einaga H (2007) In situ XAFS studies of Au particle formation by photoreduction in polymer solutions. Langmuir 23:6536–6543CrossRefGoogle Scholar
  26. 26.
    Boita J, Nicolao L, Alves MCM, Morais J (2014) Observing Pt nanoparticle formation at the atomic level during polyol synthesis. Phys Chem Chem Phys 16:17640–17647CrossRefGoogle Scholar
  27. 27.
    Nayak C, Bhattacharyya D, Jha SN, Sahoo NK (2016) Growth of block copolymer stabilized metal nanoparticles probed simultaneously by in situ XAS and UV–Vis spectroscopy. J Synchrotron Radiat 23:293–303CrossRefGoogle Scholar
  28. 28.
    Shannon IJ, Maschmeyer T, Sankar G, Thomas JM, Oldroyd RD, Sheehy M, Madill D, Waller AM, Townsend RP (1997) A new cell for the collection of combined EXAFS/XRD data in situ during solid/liquid catalytic reactions. Catal Lett 44:23–27CrossRefGoogle Scholar
  29. 29.
    Tromp M, Sietsma JRA, van Bokhoven JA, van Strijdonck GPF, van Haaren RJ, van der Eerden AMJ, van Leeuwen PWNM, Koningsberger DC (2003) Deactivation processes of homogeneous Pd catalysts using in situ time resolved spectroscopic techniques. Chem Commun 1:128–129CrossRefGoogle Scholar
  30. 30.
    Briois V, Lützenkirchen-Hecht D, Villain F, Fonda E, Belin S, Griesebock B, Frahm R (2005) Time-resolved study of the oxidation of ethanol by cerium(IV) using combined quick-XANES, UV−Vis, and Raman spectroscopies. J Phys Chem A 109:320–329CrossRefGoogle Scholar
  31. 31.
    Newton MA, Jyoti B, Dent AJ, Fiddy SG, Evans J (2004) Synchronous, time resolved, diffuse reflectance FT-IR, energy dispersive EXAFS (EDE) and mass spectrometric investigation of the behaviour of Rh catalysts during NO reduction by CO. Chem Commun 21:2382–2383CrossRefGoogle Scholar
  32. 32.
    Sayers DE, Stern EA, Lytle FW (1971) New technique for investigating noncrystalline structures: Fourier analysis of the extended x-ray absorption fine structure. Phys Rev Lett 27:1204–1207CrossRefGoogle Scholar
  33. 33.
    Stern EA (1974) Theory of the extended x-ray-absorption fine structure. Phys Rev B 10:3027–3037CrossRefGoogle Scholar
  34. 34.
    Konigsberger DC, Prins R (1988) X ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley, New YorkGoogle Scholar
  35. 35.
    Bunker G (2010) Introduction to XAFS: a practical guide to X ray absorption fine structure spectroscopy. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  36. 36.
    Newville M (2001) IFEFFIT: interactive XAFS analysis and FEFF fitting. J Synchrotron Radiat 8:322–324CrossRefGoogle Scholar
  37. 37.
    George GN, Pickering IJ (2000) EXAFSPAK: a suite of computer programs for analysis of X ray absorption spectra. Stanford Synchrotron Radiation Laboratory, Stanford. EXAFSPAK ManualGoogle Scholar
  38. 38.
    Filipponi A, Di Cicco A (1995) X-ray-absorption spectroscopy and n-body distribution functions in condensed matter. II. Data analysis and applications. Phys Rev B 52:15135–15149CrossRefGoogle Scholar
  39. 39.
    Stern EA, Newville M, Ravel B, Yacoby Y, Haskel D (1995) The UWXAFS analysis package: philosophy and details. Physica B 208–209:117–120CrossRefGoogle Scholar
  40. 40.
    Kelly SD, Hesterberg D, Ravel B (2008) Analysis of soils and minerals using X-ray absorption spectroscopy. In Ulery AL, Drees R (eds) Methods of soil analysis – part 5. Mineralogical methods. Soil Science Society America, Madison, pp 387–464. ISBN 13: 978-0891188469Google Scholar
  41. 41.
    Frahm R (1988) Quick scanning exafs: first experiments. Nucl Inst Methods Phys Res A 270:578–581CrossRefGoogle Scholar
  42. 42.
    Frahm R, Richwin M, Lützenkirchen-Hecht D (2005) Recent advances and new applications of time-resolved X-ray absorption spectroscopy. Phys Scr T115:974–976CrossRefGoogle Scholar
  43. 43.
    Fonda E, Rochet A, Ribbens M, Barthe L, Belina S, Briois V (2012) The SAMBA quick-EXAFS monochromator: XAS with edge jumping. J Synchrotron Radiat 19:417–424CrossRefGoogle Scholar
  44. 44.
    Müller O, Nachtegaal M, Just J, Lützenkirchen-Hecht D, Frahm R (2016) Quick-EXAFS setup at the SuperXAS beamline for in situ X-ray absorption spectroscopy with 10 ms time resolution. J Synchrotron Radiat 23:260–266CrossRefGoogle Scholar
  45. 45.
    Prestipino C, Mathon O, Hino R, Beteva A, Pascarelli S (2011) Quick-EXAFS implementation on the general purpose EXAFS beamline at ESRF. J Synchrotron Radiat 18:176–182CrossRefGoogle Scholar
  46. 46.
    Briois V, La Fontaine C, Belin S, Barthe L, Moreno T, Pinty V, Carcy A, Girardot R, Fonda E (2016) ROCK: the new quick-EXAFS beamline at SOLEIL. J Phys Conf Ser 712:012149CrossRefGoogle Scholar
  47. 47.
    Lee PL, Beno MA, Jennings G, Ramanathan M, Knapp GS, Huang K, Bai J, Montano PA (1994) An energy dispersive x-ray absorption spectroscopy beamline, X6A, at NSLS. Rev Sci Instrum 65:1–6CrossRefGoogle Scholar
  48. 48.
    Bhattacharyya D, Poswal AK, Jha SN, Sabharwal SC (2009) First results from a dispersive EXAFS beamline developed at INDUS-2 synchrotron source at RRCAT, Indore, India. Nucl Inst Methods Phys Res A 609:286–293CrossRefGoogle Scholar
  49. 49.
    Wang X, Hanson JC, Frenkel AI, Kim J-Y, Rodriguez J’A (2004) Time-resolved studies for the mechanism of reduction of copper oxides with carbon monoxide: complex behavior of lattice oxygen and the formation of suboxides. J Phys Chem B 108:13667–13673CrossRefGoogle Scholar
  50. 50.
    Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541CrossRefGoogle Scholar
  51. 51.
    Wasserman SR, Allen PG, Shuh DK, Bucher JJ, Edelstein NM (1999) EXAFS and principal component analysis: a new shell game. J Synchrotron Radiat 6:284–286CrossRefGoogle Scholar
  52. 52.
    Frenkel AI, Kleifeld O, Wasserman SR, Sagi I (2002) Phase speciation by extended x-ray absorption fine structure spectroscopy. J Chem Phys 116:9449–9455CrossRefGoogle Scholar
  53. 53.
    Wang Q, Hanson JC, Frenkel AI (2008) Solving the structure of reaction intermediates by time-resolved synchrotron x-ray absorption spectroscopy. J Chem Phys 129:234502-1–234502-7Google Scholar
  54. 54.
    Cassinelli WH, Martins L, Passos AR, Pulcinelli SH, Santilli CV, Rochet A, Briois V (2014) Multivariate curve resolution analysis applied to time-resolved synchrotron X-ray absorption spectroscopy monitoring of the activation of copper alumina catalyst. Catal Today 229:114–122CrossRefGoogle Scholar
  55. 55.
    Voronov A, Urakawa A, van Beek W, Tsakoumis NE, Emerich H, Rønning M (2014) Multivariate curve resolution applied to in situ X-ray absorption spectroscopy data: an efficient tool for data processing and analysis. Anal Chim Acta 840:20–27CrossRefGoogle Scholar
  56. 56.
    Stötzel J, Lutzenkirchen-Hecht D, Frahm R, Santilli CV, Pulcinelli SH, Kaminski R, Fonda E, Villain F, Briois V (2010) QEXAFS and UV/Vis simultaneous monitoring of the TiO2-nanoparticles formation by hydrolytic sol-gel route. J Phys Chem C 114:6228–6236CrossRefGoogle Scholar
  57. 57.
    Meneau F, Sankar G, Morgante N, Cristol S, Catlow CRA, Thomas JM, Greaves GN (2003) Characterization of zinc oxide nanoparticles encapsulated into zeolite-Y: an in-situ combined X-ray diffraction, XAFS, and SAXS study. Nucl Inst Methods Phys Res B 199:499–503CrossRefGoogle Scholar
  58. 58.
    Couves JW, Thomas JM, Waller D, Jones RH, Dent AJ, Derbyshire GE, Greaves GN (1991) Tracing the conversion of aurichalcite to a copper catalyst by combined X ray absorption and diffraction. Nature 354:465–468CrossRefGoogle Scholar
  59. 59.
    Boita J, Alves M d CM, Morais J (2014) A reaction cell for time-resolved in situ XAS studies during wet chemical synthesis: the Cu2(OH)3Cl case. J Synchrotron Radiat 21:254–258CrossRefGoogle Scholar
  60. 60.
    Staniuk M, Hirsch O, Kranzlin N, Bohlen R, van Beek W, Abdala PM, Koziej D (2014) Puzzling mechanism behind a simple synthesis of cobalt and cobalt oxide nanoparticles: in situ synchrotron X-ray absorption and diffraction studies. Chem Mater 26:2086–2094CrossRefGoogle Scholar
  61. 61.
    Bauer M, Heusel G, Mangold S, Bertagnolli H (2010) Spectroscopic set-up for simultaneous UV-Vis/(Q)EXAFS in situ and in operando studies of homogeneous reactions under laboratory conditions. J Synchrotron Radiat 17:273–279CrossRefGoogle Scholar
  62. 62.
    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun:801–802CrossRefGoogle Scholar
  63. 63.
    Yao T, Sun Z, Li Y, Pan Z, He W, Yi X, Nomura M, Niwa Y, Yan W, Ziyu W, Jiang Y, Liu Q, Wei S (2010) Insights into initial kinetic nucleation of gold nanocrystals. J Am Chem Soc 132:7696–7701CrossRefGoogle Scholar
  64. 64.
    Kränzlin N, Staniuk M, Heiligtag FJ, Luo L, Emerich H, van Beek W, Niederberger M, Koziej D (2014) Rationale for the crystallization of titania polymorphs in solution. Nanoscale 6:14716–14723CrossRefGoogle Scholar
  65. 65.
    Caetano BL, Santilli CV, Pulcinelli SH, Briois V (2011) SAXS and UV–Vis combined to quick-XAFS monitoring of ZnO nanoparticles formation and growth. Phase Transit 84:714–725CrossRefGoogle Scholar
  66. 66.
    Hirsch O, Zeng G, Luo L, Staniuk M, Abdala PM, van Beek W, Rechberger F, Suess MJ, Niederberger M, Koziej D (2014) Aliovalent Ni in MoO2 lattice – probing the structure and valence of Ni and its implication on the electrochemical performance. Chem Mater 26:4505–4513CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chandrani Nayak
    • 1
  • S. N. Jha
    • 1
  • Dibyendu Bhattacharyya
    • 1
  1. 1.Atomic and Molecular Physics DivisionBhabha Atomic Research Centre, TrombayMumbaiIndia

Personalised recommendations