Advertisement

In Situ X-Ray Absorption Spectroscopy Studies of Functional Nanomaterials

  • Soma Chattopadhyay
  • Soon Gu Kwon
  • Elena V. Shevchenko
  • Jeffrey T. Miller
  • Steve M. Heald
Chapter

Abstract

X-ray absorption spectroscopy (XAS) is a powerful technique to study the unoccupied states and the local structure around an excited species of atoms from an element present in a material. Recently, in situ XAS is being used to study catalytic transformations, synthesis of nanoparticles and thin films, kinetics of potential battery materials, etc. Such studies can explain the mechanisms associated with the formation of chemical species during various types of reactions. In this chapter, we shall describe how XAS has proved to be a powerful characterization tool for nanomaterials with potential applications by determining the variation in interatomic distances, coordination numbers, and the type of neighboring atoms within the first few coordination shells of the atom of interest in nanoparticles.

References

  1. 1.
    Koningsberger DC, Prins R (1988) X-ray absorption, principles, applications, techniques of EXAFS, SEXAFS, XANES. Wiley, New YorkGoogle Scholar
  2. 2.
    Müller O, Nachtegaal M, Just J, Lützenkirchen-Hecht D, Frahm R (2016) Quick-EXAFS setup at the SuperXAS beamline for in situ X-ray absorption spectroscopy with 10 ms time resolution. J Synchrotron Radiat 23(1):260–266CrossRefGoogle Scholar
  3. 3.
    Prestipino C, Mathon O, Hino R, Beteva A, Pascarelli S (2011) Quick-EXAFS implementation on the general purpose EXAFS beamline at ESRF. J Synchrotron Radiat 18(2):176–182CrossRefGoogle Scholar
  4. 4.
    Mathon O, Beteva A, Borrel J, Bugnazet D, Gatla S, Hino R, Kantor I, Mairs T, Munoz M, Pasternak S, Perrin F, Pascarelli S (2015) The time-resolved and extreme condition XAS (TEXAS) facility at the European Synchrotron Radiation Facility: the general-purpose EXAFS bending-magnet beamline BM23. J Synchrotron Radiat 22(6):1548–1554CrossRefGoogle Scholar
  5. 5.
    Koide A, Fujikawa T, Ichikuni N (2014) Recent progress in EXAFS/NEXAFS spectroscopy. J Electron Spectrosc Relat Phenom 195:375–381CrossRefGoogle Scholar
  6. 6.
    Dent AJ (2002) Development of time-resolved XAFS instrumentation for quick EXAFS and energy-dispersive EXAFS measurements of catalyst systems. Top Catal 18(1–2):14–22Google Scholar
  7. 7.
    Segre CU, Leyarovska NE, Chapman LD, Lavender WM, Plag PW, King AS, Kropf AJ, Bunker BA, Kemner KM, Dutta P, Duran RS, Kaduk J (2000) The MRCAT insertion device beamline at the advanced photon source. AIP Conf Proc 521(1):419–422CrossRefGoogle Scholar
  8. 8.
    Newville M (2004) Fundamentals of XAFS. Consortium for advanced radiation sources, University of Chicago, Chicago. http://XAFS.org/Google Scholar
  9. 9.
    Lee PA, Citrin PH, Eisenberger P, Kincaid BM (1981) Extended X-ray absorption fine structure – its strengths and limitations as a structural tool. Rev Mod Phys 53(4):769CrossRefGoogle Scholar
  10. 10.
    Rehr JJ, Albers RC (2000) Theoretical approaches to X-ray absorption fine structure. Rev Mod Phys 72(3):621CrossRefGoogle Scholar
  11. 11.
    Bunker G (2010) Introduction to XAFS: a practical guide to X-ray absorption fine structure spectroscopy, 1st edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  12. 12.
    Kelly SD, Hesterberg D, Ravel B (2008) Chapter 14 Analysis of soils and minerals using X-ray absorption spectroscopy. In: Methods of soil analysis Part 5 – Mineralogical methods. Soil Science Society of America, Madison, pp 387–463Google Scholar
  13. 13.
    Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12(4):537–541CrossRefGoogle Scholar
  14. 14.
    Zabinsky SI, Rehr JJ, Andukinov A, Albers RC, Ellen MJ (1995) Multiple-scattering calculations of X-ray absorption spectra. Phys Rev B 52(4):2995CrossRefGoogle Scholar
  15. 15.
    Kumar CSSR (ed) (2010) Microfluidic devices in nanotechnology – fundamental concepts. Wiley, HobokenGoogle Scholar
  16. 16.
    Kumar CSSR (ed) (2010) Microfluidic devices in nanotechnology – applications. Wiley, HobokenGoogle Scholar
  17. 17.
    Gaur S, Miller JT, Stellwagen DR, Sanampudi A, Kumar CSSR, Spivey JJ (2012) Synthesis, characterization and testing of supported Au catalysts prepared from atomically-tailored Au38(SC12H25)24 clusters. Phys Chem Chem Phys 14(5):1627–1634CrossRefGoogle Scholar
  18. 18.
    Biswas S, Miller JT, Li Y, Nandakumar K, Kumar CSSR (2012) Developing a millifluidic platform for the synthesis of ultra-small nano-clusters: ultra-small copper nano-clusters as a case study. Small 8(5):688–698CrossRefGoogle Scholar
  19. 19.
    Krishna KS, Navin CV, Biswas S, Singh V, Ham K, Bovenkamp GL, Theegala CS, Miller JT, Spivey J, Kumar CSSR (2013) Milli-fluidics for time-resolved mapping of the growth of gold nanostructures. J Am Chem Soc 135(14):5450–5456CrossRefGoogle Scholar
  20. 20.
    Krishna KS, Biswas S, Navin CV, Yamane DG, Miller JT, Kumar CSSR (2013) Millifluidics for chemical synthesis and time-resolved mechanistic studies. J Vis Exp 81:e50711Google Scholar
  21. 21.
    Navin CV, Krishna KS, Bovenkamp GL, Miller JT, Chattopadhyay S, Shibata T, Losovyj Y, Singh V, Theegala C, Kumar CSSR (2015) Investigation of the synthesis and characterization of platinum-DMSA nanoparticles using millifluidic chip reactor. Chem Eng J 281:81–86CrossRefGoogle Scholar
  22. 22.
    Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437(7059):664–670CrossRefGoogle Scholar
  23. 23.
    Pellegrino T, Kudera S, Liedl T, Javier AM, Manna L, Parak WJ (2005) On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications. Small 1(1):48–63CrossRefGoogle Scholar
  24. 24.
    Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110(1):389–458CrossRefGoogle Scholar
  25. 25.
    Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed 46(25):4630–4660CrossRefGoogle Scholar
  26. 26.
    Kwon SG, Krylova G, Phillips PJ, Klie RF, Chattopadhyay S, Shibata T, Bunel EE, Liu Y, Prakapenka VB, Lee B, Shevchenko EV (2015) Heterogeneous nucleation and shape transformation of multicomponent metallic nanostructures. Nat Mater 14(2):215–223CrossRefGoogle Scholar
  27. 27.
    Kwon SG, Chattopadhyay S, Koo B, dos Santos Claro PC, Shibata T, Requejo FG, Giovanetti LJ, Johnson C, Prakapenka V, Lee B, Shevchenko EV (2016) Oxidation induced doping of nanoparticles revealed by in situ X-ray adsorption studies. Nano Lett 16(6):3738–3747CrossRefGoogle Scholar
  28. 28.
    McPeak KM, Becker MA, Britton NG, Majidi H, Bunker BA, Baxter JB (2010) In situ X-ray absorption near-edge structure spectroscopy of ZnO nanowire growth during chemical bath deposition. Chem Mater 22(22):6162–6170CrossRefGoogle Scholar
  29. 29.
    Song J, Zhang J, Xie Z, Wei S, Pan Z, Hu T, Xie Y (2010) In situ XAFS studies on the growth of ZnSe quantum dots. Nucl Instrum Methods Phys Res, Sect A 619(1–3):280–282CrossRefGoogle Scholar
  30. 30.
    Yan H, Mayanovic RA, Demster JW, Anderson AJ (2013) In situ monitoring of the adsorption of Co2+ on the surface of Fe3O4 nanoparticles in high-temperature aqueous fluids. J Supercrit Fluids 81:175–182CrossRefGoogle Scholar
  31. 31.
    Tryk DA, Bae IT, Hu Y, Kim S, Antonio MR, Schersona DA (1995) In situ X-ray absorption fine structure measurements of LaNi5 electrodes in alkaline electrolytes. J Electrochem Soc 142(3):824–828CrossRefGoogle Scholar
  32. 32.
    Shiraishi Y, Nakai I, Tsubata T, Himeda T, Nishikawa F (1997) In situ transmission X-ray absorption fine structure analysis of the charge–discharge process in LiMn2O4, a rechargeable lithium battery material. J Solid State Chem 133(2):587–590CrossRefGoogle Scholar
  33. 33.
    Balasubramanian M, Sun X, Yang XQ, McBreen J (2001) In situ X-ray diffraction and X-ray absorption studies of high-rate lithium-ion batteries. J Power Sources 92(1–2):1–8CrossRefGoogle Scholar
  34. 34.
    Terada Y, Yasaka K, Nishikawa F, Konishi T, Yoshio M, Nakai I (2001) In situ XAFS analysis of Li(Mn,M)2O4 (M = Cr, Co, Ni) 5V cathode materials for lithium-ion secondary batteries. J Solid State Chem 156(2):286–291CrossRefGoogle Scholar
  35. 35.
    Kropf AJ, Tostmann H, Johnson CS, Vaughey JT, Thackeray MM (2001) An in situ X-ray absorption spectroscopy study of InSb electrodes in lithium batteries. Electrochem Commun 3(5):244–251CrossRefGoogle Scholar
  36. 36.
    Balasubramanian M, McBreen J, Davidson IJ, Whitfield PS, Kargina I (2002) In situ X-ray absorption study of a layered manganese-chromium oxide-based cathode material. J Electrochem Soc 149(2):A176–A184CrossRefGoogle Scholar
  37. 37.
    Johnson CS, Kropf AJ (2002) In situ XAFS analysis of the LixNi0.8Co0.2O2 cathode during cycling in lithium batteries. Electrochim Acta 47(19):3187CrossRefGoogle Scholar
  38. 38.
    Holzapfel M, Proux O, Strobel P, Darie C, Borowski M, Morcrette M (2004) Effect of iron on delithiation in LixCo1−yFeyO2: part 2, in-situ XANES and EXAFS upon electrochemical cycling. J Mater Chem 14(1):102–110CrossRefGoogle Scholar
  39. 39.
    Yoon W-S, Balasubramanian M, Chung KY, Yang X-Q, McBreen J, Grey CP, Fischer DA (2005) Investigation of the charge compensation mechanism on the electrochemically Li-ion deintercalated Li1-xCo1/3Ni1/3Mn1/3O2 electrode system by combination of soft and hard X-ray absorption spectroscopy. J Am Chem Soc 127(49):17479–17487CrossRefGoogle Scholar
  40. 40.
    Deb A, Bergmann U, Cramer SP, Cairns EJ (2005) In-situ X-ray absorption spectroscopic study of the Li [Ni1/3Co1/3Mn1/3]O2 cathode material. J Appl Phys 97(11):113523CrossRefGoogle Scholar
  41. 41.
    Deb A, Cairns EJ (2006) In situ X-ray absorption spectroscopy – a probe of cathode materials for Li-ion cells. Fluid Phase Equilib 241(1–2):4–19CrossRefGoogle Scholar
  42. 42.
    Dominko R, Arčon I, Kodre A, Hanžel D, Gaberšček M (2009) In-situ XAS study on Li2MnSiO4 and Li2FeSiO4 cathode materials. J Power Sources 189(1):51–58CrossRefGoogle Scholar
  43. 43.
    Nedoseykina T, Kim MG, Park S-A, Kim H-S, Kim S-B, Cho J, Lee Y (2010) In situ X-ray absorption spectroscopic study for the electrochemical delithiation of a cathode LiFe0.4Mn0.6PO4 material. Electrochim Acta 55(28):8876–8882CrossRefGoogle Scholar
  44. 44.
    Ito A, Sato Y, Sanada T, Hatano M, Horie H, Ohsawa Y (2011) In situ X-ray absorption spectroscopic study of Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2. J Power Sources 196(16):6828–6834CrossRefGoogle Scholar
  45. 45.
    Simonin L, Colin J-F, Ranieri V, Canévet E, Martin J-F, Bourbon C, Baehtz C, Strobel P, Daniel L, Patoux S (2012) In-situ investigations of a Li-rich Mn-Ni layered oxide for Li-ion batteries. J Mater Chem 22(22):11316–11322CrossRefGoogle Scholar
  46. 46.
    Love CT, Korovina A, Patridge CJ, Swider-Lyons KE, Twigg ME, Ramaker DE (2013) Review of LiFePO4 phase transition mechanisms and new observations from X-ray absorption spectroscopy. J Electrochem Soc 160(5):A3153–A3161CrossRefGoogle Scholar
  47. 47.
    Pohl AH, Guda AA, Shapovalov VV, Witte R, Das B, Scheiba F, Rothe J, Soldatov AV, Fichtner M (2014) Oxidation state and local structure of a high-capacity LiF/Fe(V2O5) conversion cathode for Li-ion batteries. Acta Mater 68:179–188CrossRefGoogle Scholar
  48. 48.
    Hirsch O, Zeng G, Luo L, Staniuk M, Abdala PM, van Beek W, Rechberger F, Süess MJ, Niederberger M, Koziej D (2014) Aliovalent Ni in MoO lattice – probing the structure and valence of Ni and its implication on the electrochemical performance. Chem Mater 26(15):4505–4513CrossRefGoogle Scholar
  49. 49.
    Pelliccione CJ, Ding Y, Timofeeva EV, Segre CU (2015) In situ XAFS study of the capacity fading mechanisms in ZnO anodes for lithium-ion batteries. J Electrochem Soc 162(10):A1935–A1939CrossRefGoogle Scholar
  50. 50.
    Li B, Shao R, Yan H, An L, Zhang B, Wei H, Ma J, Xia D, Han X (2016) Understanding the stability for Li-rich layered oxide Li2RuO3 cathode. Adv Funct Mater 26(9):1330–1337CrossRefGoogle Scholar
  51. 51.
    Mansour AN, Badway F, Yoon WS, Chung KY, Amatucci GG (2010) In situ X-ray absorption spectroscopic investigation of the electrochemical conversion reactions of CuF2-MoO3 nanocomposite. J Solid State Chem 183(12):3029–3038CrossRefGoogle Scholar
  52. 52.
    Pelliccione CJ, Timofeeva EV, Segre CU (2016) Potential-resolved in situ X-ray absorption spectroscopy study of Sn and SnO nanomaterial anodes for lithium-ion batteries. J Phys Chem C 120(10):5331–5339CrossRefGoogle Scholar
  53. 53.
    Pellicione CJ, Timofeeva EV, Segre CU (2015) In situ X-ray absorption spectroscopy study of the capacity fading mechanism in hybrid Sn3O2(OH)2/graphite battery anode nanomaterials. Chem Mater 27(2):574–580CrossRefGoogle Scholar
  54. 54.
    Patridge CJ, Love CT, Swider-Lyons KE, Twigg ME, Ramaker DE (2013) In-situ X-ray absorption spectroscopy analysis of capacity fade in nanoscale-LiCoO2. J Solid State Chem 203:134–144CrossRefGoogle Scholar
  55. 55.
    Pelliccione CJ, Li YR, Marschilok AC, Takeuchi KJ, Takeuchi ES (2016) X-ray absorption spectroscopy of lithium insertion and de-insertion in copper birnessite nanoparticle electrodes. Phys Chem Chem Phys 18(4):2959–2967CrossRefGoogle Scholar
  56. 56.
    Koo B, Xiong H, Slater MD, Prakapenka VB, Balasubramanian M, Podsiadlo P, Johnson CS, Rajh T, Shevchenko EV (2012) Hollow iron oxide nanoparticles for application in lithium ion batteries. Nano Lett 12(5):2429–2435CrossRefGoogle Scholar
  57. 57.
    Koo B, Goli P, Sumant AV, dos Santos Claro PC, Rajh T, Johnson CS, Balandin AA, Shevchenko EV (2014) Toward lithium ion batteries with enhanced thermal conductivity. ACS Nano 8(7):7202–7207CrossRefGoogle Scholar
  58. 58.
    Koo B, Chattopadhyay S, Shibata T, Prakapenka VB, Johnson CS, Rajh T, Shevchenko EV (2013) Intercalation of sodium ions into hollow iron oxide nanoparticles. Chem Mater 25(2):245–252CrossRefGoogle Scholar
  59. 59.
    Iwasawa Y (1997) Applications of X-ray absorption fine structure to catalysts and model surfaces. J Phys IV 7(C2):67–81Google Scholar
  60. 60.
    Mukerjee S, McGreen J (1999) An in-situ X-ray absorption spectroscopy investigation of the effect of Sn additions to carbon-supported Pt electrocatalysts, part 1. J Electrochem Soc 146(2):600–606CrossRefGoogle Scholar
  61. 61.
    Bazin D, Mottet C, Tréglia G, Lynch J (2000) New trends in heterogeneous catalysis processes on metallic clusters from synchrotron radiation and theoretical studies. Appl Surf Sci 164(1–4):140–146CrossRefGoogle Scholar
  62. 62.
    Bazin D, Mottet C, Tréglia G (2000) New opportunities to understand heterogeneous catalysis processes on nanoscale bimetallic particles through synchrotron radiation and theoretical studies. Appl Catal A Gen 200:47–54CrossRefGoogle Scholar
  63. 63.
    Lee JS, Park ED (2002) In-situ XAFS characterization of supported homogeneous catalysts. Top Catal 18(1–2):67–72CrossRefGoogle Scholar
  64. 64.
    Bazin D (2002) Solid state concepts to understand catalysis using nanoscale metallic particles. Top Catal 18(1–2):79–84CrossRefGoogle Scholar
  65. 65.
    Grunwaldt JD, Wandeler R, Baiker A (2003) Supercritical fluids in catalysis: opportunities of in-situ spectroscopic studies and monitoring phase behavior. Catal Rev Sci Eng 45(1):1–96CrossRefGoogle Scholar
  66. 66.
    Bazin D, Rehr J (2003) Soft X-ray absorption spectroscopy at the cutting edge for nanomaterials used in heterogeneous catalysis: the state of the art. Catal Lett 87(1–2):85–90CrossRefGoogle Scholar
  67. 67.
    Bare SR, Ressler T (2009) Chapter 6 characterization of catalysts in reactive atmospheres by X-ray absorption spectroscopy. Adv Catal 52:339–465Google Scholar
  68. 68.
    Grunwaldt JD (2009) Shining X-rays on catalysts at work. J Phys Conf Ser 190(1):012151CrossRefGoogle Scholar
  69. 69.
    Andrew J, Lobo RF (2010) Identifying reaction intermediates and catalytic active sites through in situ characterization techniques. Chem Soc Rev 39(12):4783–4793CrossRefGoogle Scholar
  70. 70.
    Singh J, Lamberti C, van Bokhoven JA (2010) Advanced X-ray absorption and emission spectroscopy: in situ catalytic studies. Chem Soc Rev 39(12):4754–4766CrossRefGoogle Scholar
  71. 71.
    Pascarelli S, Mathon O (2010) Advances in high brilliance energy dispersive X-ray absorption spectroscopy. Phys Chem Chem Phys 12(21):5535–5546CrossRefGoogle Scholar
  72. 72.
    Ferri D, Newton MA, Nachtegaal M (2011) Modulation excitation X-ray absorption spectroscopy to probe surface species on heterogeneous catalysts. Top Catal 54(16–18):1070–1078CrossRefGoogle Scholar
  73. 73.
    Fechetea I, Wangb Y, Vedrinec JC (2012) The past, present and future of heterogeneous catalysis. Catal Today 189(1):2–27CrossRefGoogle Scholar
  74. 74.
    Frenkel AI (2012) Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts. Chem Soc Rev 41(24):8163–8178CrossRefGoogle Scholar
  75. 75.
    Wachs IE (2013) Catalysis science of supported vanadium oxide catalysts. Dalton Trans 42(33):11762–11769CrossRefGoogle Scholar
  76. 76.
    Ehteshami SMM, Chan SH (2013) A review of electrocatalysts with enhanced CO tolerance and stability for polymer electrolyte membrane fuel cells. Electrochim Acta 93:334–345CrossRefGoogle Scholar
  77. 77.
    Grunwaldt J-D, Wagner JB, Dunin-Barkowski RE (2013) Imaging catalysts at work: a hierarchical approach from the macro-to the meso- and nano-scale. ChemCatChem 5(1):62–80CrossRefGoogle Scholar
  78. 78.
    Nemeth L, Bare SR (2014) Science and technology of framework metal containing zeotype catalysts. Adv Catal 57:1–97Google Scholar
  79. 79.
    Garino C, Borfecchia E, Gobetto R, van Bokhoven JA, Lamberti C (2014) Determination of the electronic and structural configuration of coordination compounds by synchrotron-radiation techniques. Coord Chem Rev 277:130–186CrossRefGoogle Scholar
  80. 80.
    Tielens F, Bazin D (2015) Operando characterization and DFT modelling of nanospinels: some examples showing the relationship with catalytic activity. Appl Catal A Gen 504:631–641CrossRefGoogle Scholar
  81. 81.
    Sherborne GJ, Nguyen BN (2015) Recent XAS studies into homogeneous metal catalyst in fine chemical and pharmaceutical syntheses. Chem Cent J 9(1):37CrossRefGoogle Scholar
  82. 82.
    Zhu M, Wachs IE (2015) Iron-based catalysts for the high-temperature water gas shift (HT-WGS) reaction: a review. ACS Catal 6(2):722–732CrossRefGoogle Scholar
  83. 83.
    Meneses CT, Flores WH, Sotero AP, Tamura E, Garcia F, Sasaki JM (2006) In situ system for X-ray absorption spectroscopy experiments to investigate nanoparticle crystallization. J Synchrotron Radiat 13(6):468–470CrossRefGoogle Scholar
  84. 84.
    Bare SR, Kelly SD, Ravel B, Greenlay N, King L, Mickelson GE (2010) Characterizing industrial catalysts using in situ XAFS under identical conditions. Phys Chem Chem Phys 12(27):7702–7711CrossRefGoogle Scholar
  85. 85.
    Nelson RC, Miller JT (2012) An introduction to X-ray absorption spectroscopy and its in situ application to organometallic compounds and homogeneous catalysts. Catal Sci Technol 2(3):461–470CrossRefGoogle Scholar
  86. 86.
    Rochet A, Moizan V, Pichon C, Diehl F, Berliet A, Briois V (2011) In situ and operando structural characterization of a Fischer-Tropsch supported cobalt catalyst. Catal Today 171(1):186–191CrossRefGoogle Scholar
  87. 87.
    O’Neill BJ, Miller JT, Dietrich PJ, Sollberger FG, Ribeiro FH, Dumesic JA (2014) Operando X-ray absorption spectroscopy studies of sintering for supported copper catalysts during liquid-phase reaction. ChemCatChem 6(9):2493–2496CrossRefGoogle Scholar
  88. 88.
    Grunwaldt J-D, Caravati M, Hannemann S, Baiker A (2004) X-ray absorption spectroscopy under reaction conditions: suitability of different reaction cells for combined catalyst characterization and time-resolved studies. Phys Chem Chem Phys 6:3037–3047CrossRefGoogle Scholar
  89. 89.
    Kumar A, Miller JT, Mukasyan AS, Wolf EE (2013) In situ XAS and FTIR studies of a multi-component Ni/Fe/Cu catalyst for hydrogen production from ethanol. Appl Catal A Gen 467:593–603CrossRefGoogle Scholar
  90. 90.
    Sayah E, Fontaine CL, Briois V, Brouri D, Massiani P (2012) Silver species reduction upon exposure of Ag/Al2O3 catalyst to gaseous ethanol: an in situ quick-XANES study. Catal Today 189(1):155–159CrossRefGoogle Scholar
  91. 91.
    Martinelli M, Jocabs G, Graham UM, Shafer WD, Cronauer DC, Kropf AJ, Marshall CL, Khalid S, Visconti CG, Letti L, Davis BH (2015) Water-gas shift: characterization and testing of nanoscale YSZ supported Pt catalysts. Appl Catal A Gen 497:184–197CrossRefGoogle Scholar
  92. 92.
    Maclennan A, Banerjee A, Hu Y, Miller JT, Scott RWJ (2013) In situ X-ray absorption spectroscopic analysis of gold–palladium bimetallic nanoparticle catalysts. ACS Catal 3(6):1411–1419CrossRefGoogle Scholar
  93. 93.
    Craievich AF (2002) Synchrotron SAXS studies of nanostructured materials and colloidal solutions. A review. Mater Res 5(1):1–11CrossRefGoogle Scholar
  94. 94.
    Abécassis B, Testard F, Spalla O, Barboux P (2007) Probing in situ the nucleation and growth of gold nanoparticles by small-angle X-ray scattering. Nano Lett 7(6):1723–1727CrossRefGoogle Scholar
  95. 95.
    Susini J, Salome M, Fayward B, Ortega R, Kaulich B (2002) The scanning X-ray microprobe at the ESRF X-ray microscopy beamline. Surf Rev Lett 9(1):203–211CrossRefGoogle Scholar
  96. 96.
    Wu J, Shan S, Petkov V, Prasai B, Cronk H, Joseph P, Luo J, Zhong C-J (2015) Composition-structure-activity relationships for palladium-alloyed nanocatalysts in oxygen reduction reaction: an ex-situ/in-situ high energy X-ray diffraction study. ACS Catal 5(9):5317–5327CrossRefGoogle Scholar
  97. 97.
    Beyer KA, Zhao H, Borkiewicz OJ, Newton MA, Chupas PJ, Chapman KW (2014) Simultaneous diffuse reflection infrared spectroscopy and X-ray pair distribution function measurements. J Appl Crystallogr 47(1):95–101CrossRefGoogle Scholar
  98. 98.
    Chapman KW (2016) Emerging operando and X-ray pair distribution function methods for energy materials developments. MRS Bull 41(3):231–240CrossRefGoogle Scholar
  99. 99.
    Oxford SM, Lee PL, Chupas PJ, Chapman KW, Kung MC, Kung HH (2010) Study of supported PtCu and PdAu bimetallic nanoparticles using in-situ X-ray tools. J Phys Chem 114(40):17085–17091Google Scholar
  100. 100.
    Newton MA, van Beek W (2010) Combining synchrotron-based X-ray techniques with vibrational spectroscopies for the in situ study of heterogeneous catalysts: a view from a bridge. Chem Soc Rev 39(12):4845–4863CrossRefGoogle Scholar
  101. 101.
    Ehrlich SN, Henson JC, Camara AL, Bariio L, Estralla M, Zhou G, Si R, Khalid S, Wang Q (2011) Combined XRD and XAS. Nucl Inst Methods Phys Res A 649(1):213–215CrossRefGoogle Scholar
  102. 102.
    Gallagher JR, Li T, Zhao H, Liu J, Lei Y, Zhang X, Ren Y, Elam JW, Meyer RJ, Winans RE, Miller JT (2014) In situ diffraction of highly dispersed supported platinum nanoparticle. Catal Sci Technol 4(9):3053–3063CrossRefGoogle Scholar
  103. 103.
    Gallagher JR, Childers DJ, Zhao H, Winans RE, Meyer RJ, Miller JT (2015) Structural evolution of an intermetallic Pd-Zn catalyst selective for propane dehydrogenation. Phys Chem Chem Phys 17(42):28144–28153CrossRefGoogle Scholar
  104. 104.
    Muñoz FF, Cabezas MD, Acuña LM, Leyva AG, Baker RT, Fuentes RO (2011) Structural properties and reduction behavior of novel nanostructured Pd/gadolinia-doped ceria catalysts with tubular morphology. J Phys Chem C 115(17):8744–8752CrossRefGoogle Scholar
  105. 105.
    Sasaki K, Kuttiyiel KA, Barrio L, Su D, Frenkel AI, Marinkovic N, Mahajan D, Adzic RR (2011) Carbon-supported IrNi core-shell nanoparticles: synthesis, characterization, and catalytic activity. J Phys Chem C 115(20):9894–9902CrossRefGoogle Scholar
  106. 106.
    Keating J, Sankar G, Hyde TI, Kohara S, Ohara K (2013) Elucidation of structure and nature of the PdO–Pd transformation using in situ PDF and XAS techniques. Phys Chem Chem Phys 15(22):8555–8565CrossRefGoogle Scholar
  107. 107.
    Kan Y, Hu Y, Croy J, Ren Y, Sun C-J, Heald SM, Bareño J, Bloom I, Chen Z (2014) Formation of Li2MnO3 investigated by in situ synchrotron probes. J Power Sources 266:341–346CrossRefGoogle Scholar
  108. 108.
    Zhang K, Zhao Z, Wu Z, Zhou Y (2015) Synthesis and detection the oxidization of Co cores of Co@SiO2 core-shell nanoparticles by in situ XRD and EXAFS. Nanoscale Res Lett 10(1):37CrossRefGoogle Scholar
  109. 109.
    Cormary B, Li T, Liakakos N, Peres L, Fazzini P-F, Blon T, Respaud M, Kropf AJ, Chaudret B, Miller JT, Mader EA, Soulantica K (2016) Concerted growth and ordering of cobalt nanorod arrays as revealed by tandem in situ SAXS-XAS studies. J Am Chem Soc 138(27):8422–8431CrossRefGoogle Scholar
  110. 110.
    Penfold TJ, Milne CJ, Chergui M (2013) Recent advances in ultrafast X-ray spectroscopy of solutions. In: Rice SA, Dinner AR (eds) Advances in chemical physics, 2nd edn. Wiley, Hoboken, pp 1–41Google Scholar
  111. 111.
    Borfecchia E, Garino C, Salassa L, Lamberti C (2013) Synchrotron ultrafast techniques for photoactive transition metal complexes. Phil Trans R Soc A 371:20120132.  https://doi.org/10.1098/rsta.2012.0132CrossRefGoogle Scholar
  112. 112.
    Ortega R (2012) X-ray absorption spectroscopy of biological samples. A tutorial. J Anal At Spectrom 27(12):2054–2065CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Soma Chattopadhyay
    • 1
  • Soon Gu Kwon
    • 2
  • Elena V. Shevchenko
    • 3
  • Jeffrey T. Miller
    • 4
  • Steve M. Heald
    • 5
  1. 1.Elgin Community CollegeElginUSA
  2. 2.Center for Nanoparticle ResearchInstitute for Basic Science and Seoul National UniversitySeoulRepublic of Korea
  3. 3.Nanoscience and Technology divisionArgonne National LaboratoryArgonneUSA
  4. 4.School of Chemical EngineeringPurdue UniversityWest LafayetteUSA
  5. 5.Advanced Photon SourceArgonne National LaboratoryArgonneUSA

Personalised recommendations