Skip to main content

Wide-Field Surface Plasmon Resonance Microscopy for In-Situ Characterization of Nanoparticle Suspensions

  • Chapter
  • First Online:
In-situ Characterization Techniques for Nanomaterials

Abstract

During the past two decades, nanomaterials have had an enormous diversity of applications in different industrial fields and fundamental research. Some of these nanomaterials are specifically engineered to exhibit unique optical, electrical, or other physical or chemical characteristics. Owing to these attributes, the products containing various engineered nanoparticles (NP) cover large segments of the market from clothing to electronics and healthcare products [1]. The rapid development of nanotechnologies, their industrial applications, and related nanosafety concerns demand sensitive analytical methods for the identification and analysis of nanoparticles (NPs) in very different media [2]. In the same time, there are serious concerns on possible toxicity of nanoparticles for humans and environment [3]. Engineered NPs (ENPs) have to be analyzed not only during their production, in pure and concentrated form, but also at trace concentrations in environment, drinking water and food, healthcare and pharmacological products, biological fluids, etc. Ideally, such a technique should provide a possibility to detect NPs at the level of single particles and deliver information on their concentration, core and surface chemical composition, size, and shape [2–4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stark WJ, Stoessel PR, Wohlleben W, Hafner A (2015) Industrial applications of nanoparticles. Chem Soc Rev 44:5793–5805

    Article  CAS  Google Scholar 

  2. Babick F, Mielke J, Wohlleben W, Weigel S, Hodoroaba V-D (2016) How reliably can a material be classified as a nanomaterial? Available particle-sizing techniques at work. J Nanopart Res 18:158

    Article  Google Scholar 

  3. Love SA, Maurer-Jones MA, Thompson JW, Lin YS, Haynes CL (2012) Assessing nanoparticle toxicity. Annu Rev Anal Chem 5:181–205

    Article  CAS  Google Scholar 

  4. Bleeker EAJ, de Jong WH, Geertsma RE, Groenewold M, Heugens EHW, Koers-Jacquemijns M et al (2013) Considerations on the EU definition of a nanomaterial: science to support policy making. Regul Toxicol Pharmacol 65:119–125

    Article  Google Scholar 

  5. Nič M, Jirát J, Košata B, Jenkins A, McNaught A (eds) (2009) IUPAC compendium of chemical terminology: gold book. 2.1.0. IUPAC, Research Triagle Park

    Google Scholar 

  6. Berne BJ, Pecora R (2000) Dynamic light scattering: with applications to chemistry, biology, and physics. Dover Publications, Mineola

    Google Scholar 

  7. Jiang J, Oberdörster G, Biswas P (2008) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89

    Article  CAS  Google Scholar 

  8. Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253

    Article  CAS  Google Scholar 

  9. Medebach M, Moitzi C, Freiberger N, Glatter O (2007) Dynamic light scattering in turbid colloidal dispersions: a comparison between the modified flat-cell light-scattering instrument and 3D dynamic light-scattering instrument. J Colloid Interface Sci 305:88–93

    Article  CAS  Google Scholar 

  10. Urban C, Schurtenberger P (1998) Characterization of turbid colloidal suspensions using light scattering techniques combined with cross-correlation methods. J Colloid Interface Sci 207:150–158

    Article  CAS  Google Scholar 

  11. Pusey PN (1999) Suppression of multiple scattering by photon cross-correlation techniques. Curr Opin Colloid Interface Sci 4:177–185

    Article  CAS  Google Scholar 

  12. Pine DJ, Weitz DA, Chaikin PM, Herbolzheimer E (1988) Diffusing wave spectroscopy. Phys Rev Lett 60:1134

    Article  CAS  Google Scholar 

  13. Bressel L, Hass R, Reich O (2013) Particle sizing in highly turbid dispersions by photon density wave spectroscopy. J Quant Spectrosc Radiat Transf 126:122–129

    Article  CAS  Google Scholar 

  14. Makra I, Terejánszky P, Gyurcsányi RE (2015) A method based on light scattering to estimate the concentration of virus particles without the need for virus particle standards. MethodsX 2:91–99

    Article  Google Scholar 

  15. Quinten M (2011) Optical properties of nanoparticle systems: Mie and beyond. Wiley-VCH, Weinheim

    Book  Google Scholar 

  16. Mappes T, Jahr N, Csaki A, Vogler N, Popp J, Fritzsche W (2012) The invention of immersion ultramicroscopy in 1912-the birth of nanotechnology? Angew Chem Int Ed 51:11208–11212

    Article  CAS  Google Scholar 

  17. Xiao L, Qiao Y, He Y, Yeung ES (2010) Three dimensional orientational imaging of nanoparticles with darkfield microscopy. Anal Chem 82:5268–5274

    Article  CAS  Google Scholar 

  18. Hole P, Sillence K, Hannell C, Maguire CM, Roesslein M, Suarez G et al (2013) Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA). J Nanopart Res 15:2101

    Article  CAS  Google Scholar 

  19. Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Pharm Res 27:796–810

    Article  CAS  Google Scholar 

  20. Gardiner C, Ferreira YJ, Dragovic RA, Redman CWG, Sargent IL (2013) Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles 2:19671

    Article  CAS  Google Scholar 

  21. Kramberger P, Ciringer M, Štrancar A, Peterka M (2012) Evaluation of nanoparticle tracking analysis for total virus particle determination. Virol J 9:265

    Article  CAS  Google Scholar 

  22. Tian X, Nejadnik MR, Baunsgaard D, Henriksen A, Rischel C, Jiskoot W (2016) A comprehensive evaluation of nanoparticle tracking analysis (nanosight) for characterization of proteinaceous submicron particles. J Pharm Sci 105:3366–3375

    Article  CAS  Google Scholar 

  23. Gallego-Urrea JA, Tuoriniemi J, Hassellöv M (2011) Applications of particle-tracking analysis to the determination of size distributions and concentrations of nanoparticles in environmental, biological and food samples. TrAC Trends Anal Chem 30:473–483

    Article  CAS  Google Scholar 

  24. Giavazzi F, Brogioli D, Trappe V, Bellini T, Cerbino R (2009) Scattering information obtained by optical microscopy: differential dynamic microscopy and beyond. Phys Rev E 80:031403

    Article  CAS  Google Scholar 

  25. Cerbino R, Trappe V (2008) Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Phys Rev Lett 100:188102

    Article  CAS  Google Scholar 

  26. Martinez VA, Besseling R, Croze OA, Tailleur J, Reufer M, Schwarz-Linek J et al (2012) Differential dynamic microscopy: a high-throughput method for characterizing the motility of microorganisms. Biophys J 103:1637–1647

    Article  CAS  Google Scholar 

  27. Wilson LG, Martinez VA, Schwarz-Linek J, Tailleur J, Bryant G, Pusey PN et al (2011) Differential dynamic microscopy of bacterial motility. Phys Rev Lett 106:018101

    Article  CAS  Google Scholar 

  28. Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV−vis spectra. Anal Chem 79:4215–4221

    Article  CAS  Google Scholar 

  29. Paramelle D, Sadovoy A, Gorelik S, Free P, Hobley J, Fernig DG (2014) A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst 139:4855

    Article  CAS  Google Scholar 

  30. Mutavdžić D, Xu J, Thakur G, Triulzi R, Kasas S, Jeremić M et al (2011) Determination of the size of quantum dots by fluorescence spectroscopy. Analyst 136:2391

    Article  CAS  Google Scholar 

  31. Yim S-Y, Park J-H, Kim M-G (2015) Dark-field spectral imaging microscope for localized surface plasmon resonance-based biosensing. Proc SPIE 9523:952307

    Article  Google Scholar 

  32. Boyer D (2002) Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297:1160–1163

    Article  CAS  Google Scholar 

  33. Gaiduk A, Ruijgrok PV, Yorulmaz M, Orrit M (2010) Detection limits in photothermal microscopy. Chem Sci 1:343

    Article  CAS  Google Scholar 

  34. Diwakar PK, Loper KH, Matiaske A-M, Hahn DW (2012) Laser-induced breakdown spectroscopy for analysis of micro and nanoparticles. J Anal At Spectrom 27:1110

    Article  CAS  Google Scholar 

  35. Gimenez Y, Busser B, Trichard F, Kulesza A, Laurent JM, Zaun V et al (2016) 3D imaging of nanoparticle distribution in biological tissue by laser-induced breakdown spectroscopy. Sci Rep 6:29936

    Article  CAS  Google Scholar 

  36. Schwertfeger DM, Velicogna JR, Jesmer AH, Scroggins RP, Princz JI (2016) Single particle-inductively coupled plasma mass spectroscopy analysis of metallic nanoparticles in environmental samples with large dissolved analyte fractions. Anal Chem 88:9908–9914

    Article  CAS  Google Scholar 

  37. Laborda F, Bolea E, Jiménez-Lamana J (2014) Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis. Anal Chem 86:2270–2278

    Article  CAS  Google Scholar 

  38. Agbabiaka A, Wiltfong M, Park C (2013) Small angle X-ray scattering technique for the particle size distribution of nonporous nanoparticles. J Nanopart 2013:1–11

    Article  CAS  Google Scholar 

  39. Li T, Senesi AJ, Lee B (2016) Small angle X-ray scattering for nanoparticle research. Chem Rev 116:11128–11180

    Article  CAS  Google Scholar 

  40. Chu B, Liu T (2000) Characterization of nanoparticles by scattering techniques. J Nanopart Res 2:29–41

    Article  CAS  Google Scholar 

  41. Roberts GS, Kozak D, Anderson W, Broom MF, Vogel R, Trau M (2010) Tunable nano/micropores for particle detection and discrimination: scanning ion occlusion spectroscopy. Small 6:2653–2658

    Article  CAS  Google Scholar 

  42. Roberts GS, Yu S, Zeng Q, Chan LCL, Anderson W, Colby AH et al (2012) Tunable pores for measuring concentrations of synthetic and biological nanoparticle dispersions. Biosens Bioelectron 31:17–25

    Article  CAS  Google Scholar 

  43. Wang Y, Kececi K, Mirkin MV, Mani V, Sardesai N, Rusling JF (2013) Resistive-pulse measurements with nanopipettes: detection of Au nanoparticles and nanoparticle-bound anti-peanut IgY. Chem Sci 4:655–663

    Article  CAS  Google Scholar 

  44. Makra I, Gyurcsányi RE (2014) Electrochemical sensing with nanopores: a mini review. Electrochem Commun 43:55–59

    Article  CAS  Google Scholar 

  45. Weatherall E, Willmott GR (2015) Applications of tunable resistive pulse sensing. Analyst 140:3318–3334

    Article  CAS  Google Scholar 

  46. Yang L, Yamamoto T (2016) Quantification of virus particles using nanopore-based resistive-pulse sensing techniques. Front Microbiol 7:1500

    Google Scholar 

  47. Cheng W, Compton RG (2014) Electrochemical detection of nanoparticles by ‘nano-impact’ methods. TrAC Trends Anal Chem 58:79–89

    Article  CAS  Google Scholar 

  48. Rees NV (2014) Electrochemical insight from nanoparticle collisions with electrodes: a mini-review. Electrochem Commun 43:83–86

    Article  CAS  Google Scholar 

  49. Sokolov SV, Eloul S, Kätelhön E, Batchelor-McAuley C, Compton RG (2017) Electrode–particle impacts: a users guide. Phys Chem Chem Phys 19:28–43

    Article  CAS  Google Scholar 

  50. Sokolov SV, Bartlett TR, Fair P, Fletcher S, Compton RG (2016) Femtomolar detection of silver nanoparticles by flow-enhanced direct-impact voltammetry at a microelectrode array. Anal Chem 88:8908–8912

    Article  CAS  Google Scholar 

  51. DeBlois RW, Bean CP, Wesley RK (1977) Electrokinetic measurements with submicron particles and pores by the resistive pulse technique. J Colloid Interface Sci 61:323–335

    Article  CAS  Google Scholar 

  52. Aliano A, Cicero G, Nili H, Green NG, García-Sánchez P, Ramos A et al (2012) AFM in liquids. In: Bhushan B (ed) Encyclopedia of nanotechnology. Springer, Dordrecht, pp 83–89

    Google Scholar 

  53. Baalousha M, Prasad A, Lead JR (2014) Quantitative measurement of the nanoparticle size and number concentration from liquid suspensions by atomic force microscopy. Environ Sci: Processes Impacts 16:1338

    CAS  Google Scholar 

  54. Baalousha M, Kammer FVD, Motelica-Heino M, Le Coustumer P (2005) Natural sample fractionation by FlFFF–MALLS–TEM: sample stabilization, preparation, pre-concentration and fractionation. J Chromatogr A 1093:156–166

    Article  CAS  Google Scholar 

  55. Takahashi Y, Kumatani A, Shiku H, Matsue T (2017) Scanning probe microscopy for nanoscale electrochemical imaging. Anal Chem 89:342–357

    Article  CAS  Google Scholar 

  56. Polcari D, Dauphin-Ducharme P, Mauzeroll J (2016) Scanning electrochemical microscopy: a comprehensive review of experimental parameters from 1989 to 2015. Chem Rev 116:13234–13278

    Article  CAS  Google Scholar 

  57. Sun P, Laforge FO, Mirkin MV (2007) Scanning electrochemical microscopy in the 21st century. Phys Chem Chem Phys 9:802–823

    Article  CAS  Google Scholar 

  58. Momotenko D, Byers JC, McKelvey K, Kang M, Unwin PR (2015) High-speed electrochemical imaging. ACS Nano 9:8942–8952

    Article  CAS  Google Scholar 

  59. Williamson MJ, Tromp RM, Vereecken PM, Hull R, Ross FM (2003) Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nat Mater 2:532–536

    Article  CAS  Google Scholar 

  60. Radisic A, Vereecken PM, Hannon JB, Searson PC, Ross FM (2006) Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett 6:238–242

    Article  CAS  Google Scholar 

  61. Hodnik N, Dehm G, Mayrhofer KJJ (2016) Importance and challenges of electrochemical in situ liquid cell electron microscopy for energy conversion research. Acc Chem Res 49:2015–2022

    Article  CAS  Google Scholar 

  62. Stuart EJE, Tschulik K, Omanović D, Cullen JT, Jurkschat K, Crossley A et al (2013) Electrochemical detection of commercial silver nanoparticles: identification, sizing and detection in environmental media. Nanotechnology 24:444002

    Article  CAS  Google Scholar 

  63. Moretto LM, Kalcher K (eds) (2015) Environmental analysis by electrochemical sensors and biosensors. Springer, New York

    Google Scholar 

  64. Wagner T, Lazar J, Schnakenberg U, Böker A (2016) In situ electrochemical impedance spectroscopy of electrostatically driven selective gold nanoparticle adsorption on block copolymer lamellae. ACS Appl Mater Interfaces 8:27282–27290

    Article  CAS  Google Scholar 

  65. Proll G, Markovic G, Fechner P, Proell F, Gauglitz G (2017) Reflectometric interference spectroscopy. In: Rasooly A, Prickril B (eds) Biosensors and biodetection. Springer, New York, pp 207–220

    Chapter  Google Scholar 

  66. Hänel C, Gauglitz G (2002) Comparison of reflectometric interference spectroscopy with other instruments for label-free optical detection. Anal Bioanal Chem 372:91–100

    Article  CAS  Google Scholar 

  67. Gauglitz G (2005) Multiple reflectance interference spectroscopy measurements made in parallel for binding studies. Rev Sci Instrum 76:062224

    Article  CAS  Google Scholar 

  68. Terrettaz S, Stora T, Duschl C, Vogel H (1993) Protein binding to supported lipid membranes: investigation of the cholera toxin-ganglioside interaction by simultaneous impedance spectroscopy and surface plasmon resonance. Langmuir 9:1361–1369

    Article  CAS  Google Scholar 

  69. Olsson ALJ, Quevedo IR, He D, Basnet M, Tufenkji N (2013) Using the quartz crystal microbalance with dissipation monitoring to evaluate the size of nanoparticles deposited on surfaces. ACS Nano 7:7833–7843

    Article  CAS  Google Scholar 

  70. Chen Q, Xu S, Liu Q, Masliyah J, Xu Z (2016) QCM-D study of nanoparticle interactions. Adv Colloid Interf Sci 233:94–114

    Article  CAS  Google Scholar 

  71. Tellechea E, Johannsmann D, Steinmetz NF, Richter RP, Reviakine I (2009) Model-independent analysis of QCM data on colloidal particle adsorption. Langmuir 25:5177–5184

    Article  CAS  Google Scholar 

  72. Teigell Beneitez N, Missinne J, Schleipen J, Orsel J, Prins MWJ, Van Steenberge G (2014) Polymer slab waveguides for the optical detection of nanoparticles in evanescent field based biosensors. Proc SPIE 8954:89540Q

    Article  CAS  Google Scholar 

  73. Özdemir ŞK, Zhu J, Yang X, Peng B, Yilmaz H, He L et al (2014) Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser. Proc Natl Acad Sci 111:E3836–E3844

    Article  CAS  Google Scholar 

  74. Baaske M, Vollmer F (2012) Optical resonator biosensors: molecular diagnostic and nanoparticle detection on an integrated platform. ChemPhysChem 13:427–436

    Article  CAS  Google Scholar 

  75. Fujimaki M, Nomura K, Sato K, Kato T, Gopinath SCB, Wang X et al (2010) Detection of colored nanomaterials using evanescent field-based waveguide sensors. Opt Express 18:15732

    Article  CAS  Google Scholar 

  76. Gopinath SCB, Awazu K, Fujimaki M (2010) Detection of influenza viruses by a waveguide-mode sensor. Anal Methods 2:1880

    Article  CAS  Google Scholar 

  77. Liedberg B, Nylander C, Lunstrom I (1983) Surface plasmon resonance for gas detection and biosensing. Sensors Actuators 4:299–304

    Article  CAS  Google Scholar 

  78. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493

    Article  CAS  Google Scholar 

  79. Jung LS, Campbell CT, Chinowsky TM, Mar MN, Yee SS (1998) Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 14:5636–5648

    Article  CAS  Google Scholar 

  80. Rebe Raz S, Leontaridou M, Bremer MGEG, Peters R, Weigel S (2012) Development of surface plasmon resonance-based sensor for detection of silver nanoparticles in food and the environment. Anal Bioanal Chem 403:2843–2850

    Article  CAS  Google Scholar 

  81. Klemm F, Johnson R, Mirsky VM (2015) Binding of protein nanoparticles to immobilized receptors. Sensors Actuators B Chem 208:616–621

    Article  CAS  Google Scholar 

  82. Canovi M, Lucchetti J, Stravalaci M, Re F, Moscatelli D, Bigini P et al (2012) Applications of surface plasmon resonance (SPR) for the characterization of nanoparticles developed for biomedical purposes. Sensors 12:16420–16432

    Article  CAS  Google Scholar 

  83. Rupert DLM, Lässer C, Eldh M, Block S, Zhdanov VP, Lotvall JO et al (2014) Determination of exosome concentration in solution using surface plasmon resonance spectroscopy. Anal Chem 86:5929–5936

    Article  CAS  Google Scholar 

  84. Rupert DLM, Shelke GV, Emilsson G, Claudio V, Block S, Lässer C et al (2016) Dual-wavelength surface plasmon resonance for determining the size and concentration of sub-populations of extracellular vesicles. Anal Chem 88:9980–9988

    Article  CAS  Google Scholar 

  85. Nizamov S, Mirsky VM (2011) Self-referencing SPR-biosensors based on penetration difference of evanescent waves. Biosens Bioelectron 28:263–269

    Article  CAS  Google Scholar 

  86. Axelrod D (1989) Chapter 9. Total internal reflection fluorescence microscopy. In: Methods in cell biology. Elsevier, Imprint: Academic Press, pp 245–270

    Google Scholar 

  87. Block S, Fast BJ, Lundgren A, Zhdanov VP, Höök F (2016) Two-dimensional flow nanometry of biological nanoparticles for accurate determination of their size and emission intensity. Nat Commun 7:12956

    Article  CAS  Google Scholar 

  88. Olsson T, Zhdanov VP, Höök F (2015) Total internal reflection fluorescence microscopy for determination of size of individual immobilized vesicles: theory and experiment. J Appl Phys 118:064702

    Article  CAS  Google Scholar 

  89. Agnarsson B, Wayment-Steele HK, Höök F, Kunze A (2016) Monitoring of single and double lipid membrane formation with high spatiotemporal resolution using evanescent light scattering microscopy. Nanoscale 8:19219–19223

    Article  CAS  Google Scholar 

  90. Agnarsson B, Lundgren A, Gunnarsson A, Rabe M, Kunze A, Mapar M et al (2015) Evanescent light-scattering microscopy for label-free interfacial imaging: from single Sub-100 nm vesicles to live cells. ACS Nano 9:11849–11862

    Article  CAS  Google Scholar 

  91. Byrne GD, Pitter MC, Zhang J, Falcone FH, Stolnik S, Somekh MG (2008) Total internal reflection microscopy for live imaging of cellular uptake of sub-micron non-fluorescent particles. J Microsc 231:168–179

    Article  CAS  Google Scholar 

  92. Velinov T, Asenovska Y, Marinkova D, Yotova L, Stoicova S, Bivolarska M et al (2011) Total internal reflection imaging of microorganism adhesion using an oil immersion objective. Colloids and Surfaces B: Biointerfaces 88(1):407–412

    Article  CAS  Google Scholar 

  93. Wang W, Tao N (2014) Detection, counting, and imaging of single nanoparticles. Anal Chem 86:2–14

    Article  CAS  Google Scholar 

  94. Zybin A, Kuritsyn YA, Gurevich EL, Temchura VV, Überla K, Niemax K (2009) Real-time detection of single immobilized nanoparticles by surface plasmon resonance imaging. Plasmonics 5:31–35

    Article  CAS  Google Scholar 

  95. Yang C-T, Wu L, Liu X, Tran NT, Bai P, Liedberg B et al (2016) Exploiting surface-plasmon-enhanced light scattering for the design of ultrasensitive biosensing modality. Anal Chem 88:11924–11930

    Article  CAS  Google Scholar 

  96. Rengevych OV, Beketov GV, Ushenin YV (2014) Visualization of submicron Si-rods by SPR-enhanced total internal reflection microscopy. Semicond Phys Quantum Electron Optoelectron 17(4):368–373

    Article  CAS  Google Scholar 

  97. Loison O, Fort E (2013) Transmission surface plasmon resonance microscopy. Appl Phys Lett 103:133110

    Article  CAS  Google Scholar 

  98. Meyer SA, Le REC, Etchegoin PG (2011) Combining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS). Anal Chem 83:2337–2344

    Article  CAS  Google Scholar 

  99. Meyer SA, Auguié B, Le Ru EC, Etchegoin PG (2012) Combined SPR and SERS microscopy in the Kretschmann configuration. J Phys Chem A 116:1000–1007

    Article  CAS  Google Scholar 

  100. Roy S, Kim J-H, Kellis JT, Poulose AJ, Robertson CR, Gast AP (2002) Surface plasmon resonance/surface plasmon enhanced fluorescence: an optical technique for the detection of multicomponent macromolecular adsorption at the solid/liquid interface. Langmuir 18:6319–6323

    Article  CAS  Google Scholar 

  101. Balaa K, Devauges V, Goulam Y, Studer V, Lévêque-Fort S, Fort E (2009) Live cell imaging with surface plasmon-mediated fluorescence microscopy. SPIE-OSA 7367:736710

    Google Scholar 

  102. Thariani R, Yager P (2010) Imaging of surfaces by concurrent surface plasmon resonance and surface plasmon resonance-enhanced fluorescence. Peccoud J, editor. PLoS One 5:e9833

    Article  CAS  Google Scholar 

  103. Avci O, Ünlü N, Özkumur A, Ünlü M (2015) Interferometric reflectance imaging sensor (IRIS) – a platform technology for multiplexed diagnostics and digital detection. Sensors 15:17649–17665

    Article  CAS  Google Scholar 

  104. Sevenler D, Ünlü NL, Ünlü MS (2015) Nanoparticle biosensing with interferometric reflectance imaging. In: Vestergaard MC, Kerman K, Hsing I-M, Tamiya E (eds) Nanobiosensors and nanobioanalyses. Springer, Tokyo, pp 81–95

    Google Scholar 

  105. Ortega-Arroyo J, Kukura P (2012) Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy. Phys Chem Chem Phys 14:15625

    Article  CAS  Google Scholar 

  106. Piliarik M, Sandoghdar V (2014) Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites. Nat Commun 5:4495

    Article  CAS  Google Scholar 

  107. Lobinski R, Szpunar J (eds) (2003) Hyphenated techniques in speciation analysis. Royal Society of Chemistry, Cambridge

    Google Scholar 

  108. Cazes J (ed) (2010) Encyclopedia of chromatography, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  109. Messaud FA, Sanderson RD, Runyon JR, Otte T, Pasch H, Williams SKR (2009) An overview on field-flow fractionation techniques and their applications in the separation and characterization of polymers. Prog Polym Sci 34:351–368

    Article  CAS  Google Scholar 

  110. Baalousha M, Stolpe B, Lead JR (2011) Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: a critical review. J Chromatogr A 1218:4078–4103

    Article  CAS  Google Scholar 

  111. Scott D, Harding SE, Rowe A (eds) (2005) Introduction to differential sedimentation. analytical ultracentrifugation. Royal Society of Chemistry, Cambridge, pp 270–290

    Google Scholar 

  112. Scott DJ, Harding SE, Rowe AJ, Royal Society of Chemistry (Great Britain) (eds) (2005) Analytical ultracentrifugation: techniques and methods. RSC Publishing, Cambridge

    Google Scholar 

  113. Krpetić Ž, Davidson AM, Volk M, Lévy R, Brust M, Cooper DL (2013) High-resolution sizing of monolayer-protected gold clusters by differential centrifugal sedimentation. ACS Nano 7:8881–8890

    Article  CAS  Google Scholar 

  114. Anderson W, Kozak D, Coleman VA, Jämting ÅK, Trau M (2013) A comparative study of submicron particle sizing platforms: accuracy, precision and resolution analysis of polydisperse particle size distributions. J Colloid Interface Sci 405:322–330

    Article  CAS  Google Scholar 

  115. Poda AR, Bednar AJ, Kennedy AJ, Harmon A, Hull M, Mitrano DM et al (2011) Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry. J Chromatogr A 1218:4219–4225

    Article  CAS  Google Scholar 

  116. Baalousha M, Kammer FVD, Motelica-Heino M, Hilal HS, Le Coustumer P (2006) Size fractionation and characterization of natural colloids by flow-field flow fractionation coupled to multi-angle laser light scattering. J Chromatogr A 1104:272–281

    Article  CAS  Google Scholar 

  117. Rothenhauesler B, Knoll W (1988) Surface plasmon microscopy. Lett Nat 332:615–617

    Article  Google Scholar 

  118. Brockman JM, Nelson BP, Corn RM (2000) Surface plasmon resonance imaging measurements of ultrathin organic films. Annu Rev Phys Chem 51:41–63

    Article  CAS  Google Scholar 

  119. Campbell C, Kim G (2007) SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials 28:2380–2392

    Article  CAS  Google Scholar 

  120. Boecker D, Zybin A, Niemax K, Grunwald C, Mirsky VM (2008) Noise reduction by multiple referencing in surface plasmon resonance imaging. Rev Sci Instrum 79:023110

    Article  CAS  Google Scholar 

  121. Rich RL, Cannon MJ, Jenkins J, Pandian P, Sundaram S, Magyar R et al (2008) Extracting kinetic rate constants from surface plasmon resonance array systems. Anal Biochem 373:112–120

    Article  CAS  Google Scholar 

  122. Halpern AR, Wood JB, Wang Y, Corn RM (2014) Single-nanoparticle near-infrared surface plasmon resonance microscopy for real-time measurements of DNA hybridization adsorption. ACS Nano 8:1022

    Article  CAS  Google Scholar 

  123. Viitala L, Maley AM, Fung HWM, Corn RM, Viitala T, Murtomäki L (2016) Surface plasmon resonance imaging microscopy of liposomes and liposome-encapsulated gold nanoparticles. J Phys Chem C 120:25958–25966

    Article  CAS  Google Scholar 

  124. Cho K, Fasoli JB, Yoshimatsu K, Shea KJ, Corn RM (2015) Measuring Melittin uptake into hydrogel nanoparticles with near-infrared single nanoparticle surface plasmon resonance microscopy. Anal Chem 87:4973–4979

    Article  CAS  Google Scholar 

  125. Wang S, Shan X, Patel U, Huang X, Lu J, Li J et al (2010) Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance. Proc Natl Acad Sci 107:16028–16032

    Article  CAS  Google Scholar 

  126. Huang B, Yu F, Zare RN (2007) Surface plasmon resonance imaging using a high numerical aperture microscope objective. Anal Chem 79:2979–2983

    Article  CAS  Google Scholar 

  127. Somekh MG, Liu S, Velinov TS, See CW (2000) High-resolution scanning surface-plasmon microscopy. Appl Opt 39:6279–6287

    Article  CAS  Google Scholar 

  128. Peterson AW, Halter M, Tona A, Plant AL (2014) High resolution surface plasmon resonance imaging for single cells. BMC Cell Biol 15:35

    Article  Google Scholar 

  129. Peterson AW, Halter M, Plant AL, Elliott JT (2016) Surface plasmon resonance microscopy: achieving a quantitative optical response. Rev Sci Instrum 87:093703

    Article  CAS  Google Scholar 

  130. Vander R, Lipson SG (2009) High-resolution surface-plasmon resonance real-time imaging. Opt Lett 34:37–39

    Article  CAS  Google Scholar 

  131. Shan X, Díez-Pérez I, Wang L, Wiktor P, Gu Y, Zhang L et al (2012) Imaging the electrocatalytic activity of single nanoparticles. Nat Nanotechnol 7:668–672

    Article  CAS  Google Scholar 

  132. Fang Y, Wang W, Wo X, Luo Y, Yin S, Wang Y et al (2014) Plasmonic imaging of electrochemical oxidation of single nanoparticles. J Am Chem Soc 136:12584–12587

    Article  CAS  Google Scholar 

  133. Yu H, Shan X, Wang S, Chen H, Tao N (2014) Plasmonic imaging and detection of single DNA molecules. ACS Nano 8:3427–3433

    Article  CAS  Google Scholar 

  134. Fang Y, Wang H, Yu H, Liu X, Wang W, Chen H-Y et al (2016) Plasmonic imaging of electrochemical reactions of single nanoparticles. Acc Chem Res 49:2614–2624

    Article  CAS  Google Scholar 

  135. Wo X, Luo Y, Tao N, Wang W, Chen H-Y (2016) Measuring the number concentration of arbitrarily-shaped gold nanoparticles with surface plasmon resonance microscopy. SCIENCE CHINA Chem 59:843–847

    Article  CAS  Google Scholar 

  136. Wang Y, Shan X, Wang H, Wang S, Tao N (2017) Plasmonic imaging of surface electrochemical reactions of single gold nanowires. J Am Chem Soc 139:1376–1379

    Article  CAS  Google Scholar 

  137. Maley AM, Terada Y, Onogi S, Shea KJ, Miura Y, Corn RM (2016) Measuring protein binding to individual hydrogel nanoparticles with single-nanoparticle surface plasmon resonance imaging microscopy. J Phys Chem C 120:16843–16849

    Article  CAS  Google Scholar 

  138. Sasian JM (1992) Image plane tilt in optical systems. Opt Eng 31:527–532

    Article  Google Scholar 

  139. Smith WJ (2000) Modern optical engineering: the design of optical systems, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  140. Laplatine L, Leroy L, Calemczuk R, Baganizi D, Marche PN, Roupioz Y et al (2014) Spatial resolution in prism-based surface plasmon resonance microscopy. Opt Express 22:22771

    Article  CAS  Google Scholar 

  141. Schasfoort RBM, Tudos AJ (2008) Handbook of surface plasmon resonance. RSC Publishing, Cambridge

    Book  Google Scholar 

  142. Nizamov S, Scherbahn V, Mirsky VM (2016) Detection and quantification of single engineered nanoparticles in complex samples using template matching in wide-field surface plasmon microscopy. Anal Chem 88:10206–10214

    Article  CAS  Google Scholar 

  143. Sidorenko I, Nizamov S, Hergenröder R, Zybin A, Kuzmichev A, Kiwull B et al (2016) Computer assisted detection and quantification of single adsorbing nanoparticles by differential surface plasmon microscopy. Microchim Acta 183:101–109

    Article  CAS  Google Scholar 

  144. Scherbahn V, Nizamov S, Mirsky VM (2016) Plasmonic detection and visualization of directed adsorption of charged single nanoparticles to patterned surfaces. Microchim Acta 183:2837–2845

    Article  CAS  Google Scholar 

  145. Nizamov S, Kasian O, Mirsky VM (2016) Individual detection and electrochemically assisted identification of adsorbed nanoparticles by using surface plasmon microscopy. Angew Chem Int Ed 55:7247–7251

    Article  CAS  Google Scholar 

  146. Nizamov S, Scherbahn V, Mirsky VM (2015) Self-referencing SPR-sensor based on integral measurements of light intensity reflected by arbitrarily distributed sensing and referencing spots. Sensors Actuators B Chem 207:740–747

    Article  CAS  Google Scholar 

  147. Nizamov S, Scherbahn V, Mirsky VM (2017) Ionic referencing in surface plasmon microscopy: visualization of the difference in surface properties of patterned monomolecular layers. Anal Chem 89:3873–3878

    Article  CAS  Google Scholar 

  148. Zybin A, Shpacovitch V, Skolnik J, Hergenröder R (2017) Optimal conditions for SPR-imaging of nano-objects. Sensors Actuators B Chem 239:338–342

    Article  CAS  Google Scholar 

  149. Weichert F, Gaspar M, Timm C, Zybin A, Gurevich EL, Engel M et al (2010) Signal analysis and classification for surface plasmon assisted microscopy of nanoobjects. Sensors Actuators B Chem 151:281–290

    Article  CAS  Google Scholar 

  150. Radke RJ, Andra S, Al-Kofahi O, Roysam B (2005) Image change detection algorithms: a systematic survey. IEEE Trans Image Process 14:294–307

    Article  Google Scholar 

  151. Lapresta-Fernández A, Salinas-Castillo A, Anderson de la Llana S, Costa-Fernández JM, Domínguez-Meister S, Cecchini R et al (2014) A general perspective of the characterization and quantification of nanoparticles: imaging, spectroscopic, and separation techniques. Crit Rev Solid State Mater Sci 39:423–458

    Article  CAS  Google Scholar 

  152. von der Kammer F, Legros S, Hofmann T, Larsen EH, Loeschner K (2011) Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. TrAC Trends Anal Chem 30:425–436

    Article  CAS  Google Scholar 

  153. Lewis JP (1995) Fast template matching. Vision interface. Canadian Image Processing and Pattern Recognition Society, Quebec, pp 15–19

    Google Scholar 

  154. Wo X, Li Z, Jiang Y, Li M, Su Y, Wang W et al (2016) Determining the absolute concentration of nanoparticles without calibration factor by visualizing the dynamic processes of interfacial adsorption. Anal Chem 88:2380–2385

    Article  CAS  Google Scholar 

  155. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1170

    Article  CAS  Google Scholar 

  156. Shpacovitch V, Sidorenko I, Lenssen J, Temchura V, Weichert F, Müller H et al (2017) Application of the PAMONO-sensor for quantification of microvesicles and determination of nano-particle size distribution. Sensors 17:244

    Article  CAS  Google Scholar 

  157. Shpacovitch V, Temchura V, Matrosovich M, Hamacher J, Skolnik J, Libuschewski P et al (2015) Application of surface plasmon resonance imaging technique for the detection of single spherical biological submicrometer particles. Anal Biochem 486:62–69

    Article  CAS  Google Scholar 

  158. Demetriadou A, Kornyshev AA (2015) Principles of nanoparticle imaging using surface plasmons. New J Phys 17:013041

    Article  CAS  Google Scholar 

  159. Demetriadou A (2015) The impact of natural modes in plasmonic imaging. Sci Rep 5:18247

    Article  CAS  Google Scholar 

  160. Son T, Kim D (2015) Theoretical approach to surface plasmon scattering microscopy for single nanoparticle detection in near infrared region. Proc SPIE 9340:93400W

    Article  Google Scholar 

  161. Lozovski V (2012) Visualization of Nano-sized objects by scattering of surface plasmon polariton theoretical aspects of the problem. J Comput Theor Nanosci 9:859–863

    Article  CAS  Google Scholar 

  162. Gurevich EL, Temchura VV, Überla K, Zybin A (2011) Analytical features of particle counting sensor based on plasmon assisted microscopy of nano objects. Sensors Actuators B Chem 160:1210–1215

    Article  CAS  Google Scholar 

  163. Yu H, Shan X, Wang S, Chen H, Tao N (2014) Molecular scale origin of surface plasmon resonance biosensors. Anal Chem 86:8992–8997

    Article  CAS  Google Scholar 

  164. Concentrative properties of aqueous solutions: density, refractive index, freezing point depression, and viscosity. In: CRC Handbook of Chemistry and Physics, 87th ed Editor-in-Chief: David R. Lide (NIST). CRC Press/Taylor and Francis Group: Boca Raton, FL. 2006. 2608 pp. ISBN 0-8493-0487-3.

    Google Scholar 

  165. Syal K, Wang W, Shan X, Wang S, Chen H-Y, Tao N (2015) Plasmonic imaging of protein interactions with single bacterial cells. Biosens Bioelectron 63:131–137

    Article  CAS  Google Scholar 

  166. Yang Y, Yu H, Shan X, Wang W, Liu X, Wang S et al (2015) Label-free tracking of single organelle transportation in cells with nanometer precision using a plasmonic imaging technique. Small 11:2878–2884

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by FP7 EC Project “NANODETECTOR” (FP7-NMP-2011-SME-5, #280478) and Thermo-SPR (MWFK). We are grateful to all project partners for discussions and suggestions. An assistance of Dr. K. Tonder and V. Scherbahn is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir M. Mirsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nizamov, S., Mirsky, V.M. (2018). Wide-Field Surface Plasmon Resonance Microscopy for In-Situ Characterization of Nanoparticle Suspensions. In: Kumar, C. (eds) In-situ Characterization Techniques for Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56322-9_3

Download citation

Publish with us

Policies and ethics