Liquid Cell Electron Microscopy for the Study of Growth Dynamics of Nanomaterials and Structure of Soft Matter

Chapter

Abstract

This chapter lays out experimental evidence from the field of liquid cell electron microscopy, related concepts from radiation chemistry, and models explaining particle growth, diffusion, and electron charging during experiments. We present an overview of main results regarding particle growth, observation of low contrast systems such as proteins, and in-operando experiments using nonaqueous solutions.

References

  1. 1.
    Taylor KA, Glaeser RM (2008) Retrospective on the early development of cryoelectron microscopy of macromolecules and a prospective on opportunities for the future. J Struct Biol 163:214–223CrossRefGoogle Scholar
  2. 2.
    Taylor KA, Glaeser RM (1974) Electron-diffraction of frozen, hydrayed protein crystals. Science 186:1036–1037CrossRefGoogle Scholar
  3. 3.
    Dubochet J, Adrian M, Chang JJ, Homo JC, Lepault J, McDowall AW, Schultz P (1988) Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21:129–228CrossRefGoogle Scholar
  4. 4.
    Parsons DF (1974) Structure of wet specimens in electron microscopy. Science 186:407–414CrossRefGoogle Scholar
  5. 5.
    Abrams IM, McBain JW (1944) A closed cell for electron microscopy. Science 100:273–274CrossRefGoogle Scholar
  6. 6.
    Williamson MJ, Tromp RM, Vereecken PM, Hull R, Ross FM (2003) Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat Mater 2:532–536CrossRefGoogle Scholar
  7. 7.
    Peckys DB, Veith GM, Joy DC, de Jonge N (2009) Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope. PLoS One 4:e8214CrossRefGoogle Scholar
  8. 8.
    Ross FM (2015) Opportunities and challenges in liquid cell electron microscopy. Science 350:aaa9886CrossRefGoogle Scholar
  9. 9.
    Jonge N, Ross FM (2011) Electron microscopy of specimens in liquid. Nat Nanotechnol 6:695CrossRefGoogle Scholar
  10. 10.
    Woehl TJ, Prozorov T (2015) The mechanisms for nanoparticle surface diffusion and chain self-assembly determined from real-time nanoscale kinetics in liquid. J Phys Chem C 119:21261–21269CrossRefGoogle Scholar
  11. 11.
    Woehl TJ, Jungjohann KL, Evans JE, Arslan I, Ristenpart WD, Browning ND (2013) Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials. Ultramicroscopy 127:53–63CrossRefGoogle Scholar
  12. 12.
    Woehl TJ, Evans JE, Arslan L, Ristenpart WD, Browning ND (2012) Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano 6:8599–8610CrossRefGoogle Scholar
  13. 13.
    Abellan P, Mehdi BL, Parent LR, Gu M, Park C, Xu W, Zhang YH, Arslan I, Zhang JG, Wang CM, Evans JE, Browning ND (2014) Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy. Nano Lett 14:1293–1299CrossRefGoogle Scholar
  14. 14.
    Abellan P, Parent LR, Al Hasan N, Park C, Arslan I, Karim AM, Evans JE, Browning ND (2016) Gaining control over radiolytic synthesis of uniform sub-3-nanometer palladium nanoparticles: use of aromatic liquids in the electron microscope. Langmuir 32:1468–1477CrossRefGoogle Scholar
  15. 15.
    Woehl TJ, Abellan P (2016) Defining the radiation chemistry during liquid cell electron microscopy to enable visualization of nanomaterial growth and degradation dynamics. J Microsc 265:135CrossRefGoogle Scholar
  16. 16.
    Zheng HM, Smith RK, Jun YW, Kisielowski C, Dahmen U, Alivisatos AP (2009) Observation of single colloidal platinum nanocrystal growth trajectories. Science 324:1309–1312CrossRefGoogle Scholar
  17. 17.
    Verch A, Pfaff M, de Jonge N (2015) Exceptionally slow movement of gold nanoparticles at a solid/liquid interface investigated by scanning transmission electron microscopy. Langmuir 31:6956–6964CrossRefGoogle Scholar
  18. 18.
    Powers AS, Liao H-G, Raja SN, Bronstein ND, Alivisatos AP, Zheng H (2016) Tracking nanoparticle diffusion and interaction during self-assembly in a liquid cell. Nano Lett 17:15CrossRefGoogle Scholar
  19. 19.
    Liu YZ, Lin XM, Sun YG, Rajh T (2013) In situ visualization of self-assembly of charged gold nanoparticles. J Am Chem Soc 135:3764–3767CrossRefGoogle Scholar
  20. 20.
    Grogan JM, Rotkina L, Bau HH (2011) In situ liquid-cell electron microscopy of colloid aggregation and growth dynamics. Phys Rev E 83:061405CrossRefGoogle Scholar
  21. 21.
    Unocic RR, Sacci RL, Brown GM, Veith GM, Dudney NJ, More KL, Walden FS, Gardiner DS, Damiano J, Nackashi DP (2014) Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc Microanal 20:452–461CrossRefGoogle Scholar
  22. 22.
    Dukes MJ, Peckys DB, de Jonge N (2010) Correlative fluorescence microscopy and scanning transmission electron microscopy of quantum-dot-labeled proteins in whole cells in liquid. ACS Nano 4:4110–4116CrossRefGoogle Scholar
  23. 23.
    Peckys DB, Mazur P, Gould KL, de Jonge N (2011) Fully hydrated yeast cells imaged with electron microscopy. Biophys J 100:2522–2529CrossRefGoogle Scholar
  24. 24.
    Woehl TJ, Kashyap S, Firlar E, Perez-Gonzalez T, Faivre D, Trubitsyn D, Bazylinski DA, Prozorov T (2014) Correlative electron and fluorescence microscopy of magnetotactic bacteria in liquid: toward in vivo imaging. Sci Rep 4:6854CrossRefGoogle Scholar
  25. 25.
    Gilmore BL, Showalter SP, Dukes MJ, Tanner JR, Demmert AC, McDonald SM, Kelly DF (2013) Visualizing viral assemblies in a nanoscale biosphere. Lab Chip 13:216–219CrossRefGoogle Scholar
  26. 26.
    Varano AC, Rahimi A, Dukes MJ, Poelzing S, McDonald SM, Kelly DF (2015) Visualizing virus particle mobility in liquid at the nanoscale. Chem Commun 51:16176–16179CrossRefGoogle Scholar
  27. 27.
    Abellan P, Woehl TJ, Parent LR, Browning ND, Evans JE, Arslan I (2014) Factors influencing quantitative liquid (scanning) transmission electron microscopy. Chem Commun 50:4873–4880CrossRefGoogle Scholar
  28. 28.
    Alloyeau D, Dachraoui W, Javed Y, Belkahla H, Wang G, Lecoq H, Ammar S, Ersen O, Wisnet A, Gazeau F, Ricolleau C (2015) Unravelling kinetic and thermodynamic effects on the growth of gold nanoplates by liquid transmission electron microscopy. Nano Lett 15:2574CrossRefGoogle Scholar
  29. 29.
    Talmon Y (1982) Thermal and radiation-damage to frozen hydrated speciments. J Microsc Oxford 125:227–237CrossRefGoogle Scholar
  30. 30.
    Jaffe JS, Glaeser RM (1984) Preparation of frozen-hydrated speciments for high-resolution electron-microscopy. Ultramicroscopy 13:373–377CrossRefGoogle Scholar
  31. 31.
    Glaeser RM (1971) Limitations to significant information in biological electron microscopy as a result of radiation damage. J Ultrastruct Res 36:466–482CrossRefGoogle Scholar
  32. 32.
    Glaeser RM, Taylor KA (1978) Radiation-damage relative to transmission electron-microscopy of biological specimans at low-temperature – review. J Microsc Oxford 112:127–138CrossRefGoogle Scholar
  33. 33.
    Talmon Y, Adrian M, Dubochet J (1986) Electron-beam radiation-damage to organic inclusions in vitreous, cubic, and hexagonal ice. J Microsc Oxford 141:375–384CrossRefGoogle Scholar
  34. 34.
    Dubochet J, Lepault J, Freeman R, Berriman JA, Homo JC (1982) Electron-microscopy of frozen water and aqueous-solutions. J Microsc Oxford 128:219–237CrossRefGoogle Scholar
  35. 35.
    Chee SW, Baraissov Z, Loh ND, Matsudaira PT, Mirsaidov U (2016) Desorption-mediated motion of nanoparticles at the liquid-solid interface. J Phys Chem C 120:20462–20470CrossRefGoogle Scholar
  36. 36.
    Park J, Elmlund H, Ercius P, Yuk JM, Limmer DT, Chen Q, Kim K, Han SH, Weitz DA, Zettl A, Alivisatos AP (2015) 3D structure of individual nanocrystals in solution by electron microscopy. Science 349:290–295CrossRefGoogle Scholar
  37. 37.
    Belloni J (2006) Nucleation, growth and properties of nanoclusters studied by radiation chemistry – application to catalysis. Catal Today 113:141–156CrossRefGoogle Scholar
  38. 38.
    Choi SH, Zhang YP, Gopalan A, Lee KP, Kang HD (2005) Preparation of catalytically efficient precious metallic colloids by gamma-irradiation and characterization. Colloids Surf A Physicochem Eng Asp 256:165–170CrossRefGoogle Scholar
  39. 39.
    Farhataziz, Rodgers MAJ (1987) Radiation chemistry, principles and applications. VCH, New YorkGoogle Scholar
  40. 40.
    Belloni J, Mostafavi M, Remita H, Marignier JL, Delcourt MO (1998) Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids. New J Chem 22:1239–1255CrossRefGoogle Scholar
  41. 41.
    Buxton GV (1987) Radiation chemistry of the liquid state. In: Farhataziz, Rodger MAJ (eds) Radiation chemistry: principles and applications. VCH, New YorkGoogle Scholar
  42. 42.
    Allen AO (1961) The radiation chemistry of water and aqueous solutions. Van Nostrand, New YorkGoogle Scholar
  43. 43.
    Dispenza C, Grimaldi N, Sabatino MA, Soroka IL, Jonsson M (2015) Radiation-engineered functional nanoparticles in aqueous systems. J Nanosci Nanotechnol 15:3445–3467CrossRefGoogle Scholar
  44. 44.
    Pastina B, LaVerne JA (1999) Scavenging of the precursor to the hydrated electron by the selenate ion. J Phys Chem A 103:209–212CrossRefGoogle Scholar
  45. 45.
    Buxton GV (2008) Radiation chemistry of the liquid state. In: Mostafavi MM, Douki T, Belloni J (eds) Radiation chemistry: principles and applications. EDP Sciences, OrsayGoogle Scholar
  46. 46.
    Buxton GV, Mulazzani QG, Ross AB (1995) Critical-review of rate constants for reactions of transients from metal-ions and metal-complexes in aqueous-solution. J Phys Chem Ref Data 24:1055–1349CrossRefGoogle Scholar
  47. 47.
    Mostafavi M (2008) Lampre, the solvated electron: a singular chemical species. In: Rizot SM, Mostafavi M, Douki T, Rigny P (eds) Radiation chemistry: from basics to applications in material and life sciences. EDP Sciences, Les UlisGoogle Scholar
  48. 48.
    Hart EJ (1964) Hydrated electron. Science 146:19–25CrossRefGoogle Scholar
  49. 49.
    Park JH, Schneider NM, Grogan JM, Reuter MC, Bau HH, Kodambaka S, Ross FM (2015) Control of electron beam-induced Au nanocrystal growth kinetics through solution chemistry. Nano Lett 15:5314–5320CrossRefGoogle Scholar
  50. 50.
    Abellan P, Woehl TJ, Evans JE, Browning ND (2014) Calibrated in situ transmission electron microscopy for the study of nanoscale processes in liquids, in chapter one – CISCEM 2014: proceedings of the second conference on in situ and correlative electron microscopy, Saarbrücken, Germany, October 14–15. In: Hawkes PW (ed) Advances in imaging and electron physics, vol 190. Elsevier Ltd, San Diego, USA pp 43–45Google Scholar
  51. 51.
    Spinks JWT, Woods RJ (1964) An introduction to radiation chemistry. Wiley, New YorkGoogle Scholar
  52. 52.
    Sutter E, Jungjohann K, Bliznakov S, Courty A, Maisonhaute E, Tenney S, Sutter P (2014) In situ liquid-cell electron microscopy of silver-palladium galvanic replacement reactions on silver nanoparticles. Nat Commun 5:4946CrossRefGoogle Scholar
  53. 53.
    Mirsaidov UM, Zheng H, Casana Y, Matsudaira P (2012) Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy. Biophys J 102:L15–L17CrossRefGoogle Scholar
  54. 54.
    Plamper FA, Gelissen AP, Timper J, Wolf A, Zezin AB, Richtering W, Tenhu H, Simon U, Mayer J, Borisov OV, Pergushov DV (2013) Spontaneous assembly of Miktoarm stars into vesicular interpolyelectrolyte complexes. Macromol Rapid Commun 34:855–860CrossRefGoogle Scholar
  55. 55.
    Wang CM, Qiao Q, Shokuhfar T, Klie RF (2014) High-resolution electron microscopy and spectroscopy of ferritin in biocompatible graphene liquid cells and graphene sandwiches. Adv Mater 26:3410–3414CrossRefGoogle Scholar
  56. 56.
    Park J, Park H, Ercius P, Pegoraro AF, Xu C, Kim JW, Han SH, Weitz DA (2015) Direct observation of wet biological samples by graphene liquid cell transmission electron microscopy. Nano Lett 15:4737–4744CrossRefGoogle Scholar
  57. 57.
    Kraus T, Jonge N (2013) Dendritic gold nanowire growth observed in liquid with transmission electron microscopy. Langmuir 29:8427CrossRefGoogle Scholar
  58. 58.
    Ahmad N, Le Bouar Y, Ricolleau C, Alloyeau D (2016) Growth of dendritic nanostructures by liquid-cell transmission electron microscopy: a reflection of the electron-irradiation history. Adv Struct Chem Imaging 2:9CrossRefGoogle Scholar
  59. 59.
    Cazaux J (1995) Correlations between ionization radiation-damage and charging effects in transmission electron-microscopy. Ultramicroscopy 60:411–425CrossRefGoogle Scholar
  60. 60.
    White ER, Mecklenburg M, Shevitski B, Singer SB, Regan BC (2012) Charged nanoparticle dynamics in water induced by scanning transmission electron microscopy. Langmuir 28:3695–3698CrossRefGoogle Scholar
  61. 61.
    Humphreys CJ, Bullough TJ, Maher RW, Turner PS (1990) Electron beam nano-etching in oxides, fluorides, metals and semiconductors. Fundamental electron and ion beam interactions with solids for microscopy, microanalysis and microlithography, scanning microscopy supplement, 4:185–192Google Scholar
  62. 62.
    Egerton RF (2007) Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy. Ultramicroscopy 107:575–586CrossRefGoogle Scholar
  63. 63.
    Downing KH, McCartney MR, Glaeser RM (2004) Experimental characterization and mitigation of specimen charging on thin films with one conducting layer. Microsc Microanal 10:783–789CrossRefGoogle Scholar
  64. 64.
    Chen YT, Wang CY, Hong YJ, Kang YT, Lai SE, Chang P, Yew TR (2014) Electron beam manipulation of gold nanoparticles external to the beam. RSC Adv 4:31652–31656CrossRefGoogle Scholar
  65. 65.
    Zheng HM, Claridge SA, Minor AM, Alivisatos AP, Dahmen U (2009) Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett 9:2460–2465CrossRefGoogle Scholar
  66. 66.
    Yuk JM, Park J, Ercius P, Kim K, Hellebusch DJ, Crommie MF, Lee JY, Zettl A, Alivisatos AP (2012) High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336:61–64CrossRefGoogle Scholar
  67. 67.
    Lu JY, Aabdin Z, Loh ND, Bhattacharya D, Mirsaidov U (2014) Nanoparticle dynamics in a nanodroplet. Nano Lett 14:2111–2115CrossRefGoogle Scholar
  68. 68.
    Woehl TJ, Park C, Evans JE, Arslan I, Ristenpart WD, Browning ND (2013) Direct observation of aggregative nanoparticle growth: kinetic modeling of the size distribution and growth rate. Nano Lett 14:373–378CrossRefGoogle Scholar
  69. 69.
    Chen Q, Smith JM, Park J, Kim K, Ho D, Rasool HI, Zettl A, Alivisatos AP (2013) 3D motion of DNA-au nanoconjugates in graphene liquid cell electron microscopy. Nano Lett 13:4556–4561CrossRefGoogle Scholar
  70. 70.
    Brenner H (1961) The slow motion of a sphere through a viscous fluid towards a plane surface. Chem Eng Sci 16:242–251CrossRefGoogle Scholar
  71. 71.
    Woods RJ, Pikaev AK (1994) Applied radiation chemistry: radiation processing. Wiley, New YorkGoogle Scholar
  72. 72.
    Ortiz D, Steinmetz V, Durand D, Legand S, Dauvois V, Maitre P, Le Caer S (2015) Radiolysis as a solution for accelerated ageing studies of electrolytes in Lithium-ion batteries. Nat Commun 6:6950CrossRefGoogle Scholar
  73. 73.
    Wang CM (2015) In situ transmission electron microscopy and spectroscopy studies of rechargeable batteries under dynamic operating conditions: a retrospective and perspective view. J Mater Res 30:326–339CrossRefGoogle Scholar
  74. 74.
    Holtz ME, Yu YC, Gunceler D, Gao J, Sundararaman R, Schwarz KA, Arias TA, Abruna HD, Muller DA (2014) Nanoscale imaging of Lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett 14:1453–1459CrossRefGoogle Scholar
  75. 75.
    Park J, Kodambaka S, Ross FM, Grogan JM, Bau HH (2012) In situ liquid cell transmission electron microscopic observation of electron beam induced Au crystal growth in a solution. Microsc Microanal 18:1098–1099CrossRefGoogle Scholar
  76. 76.
    Schneider NM, Norton MM, Mendel BJ, Grogan JM, Ross FM, Bau HH (2014) Electron–water interactions and implications for liquid cell electron microscopy. J Phys Chem C 118:22373CrossRefGoogle Scholar
  77. 77.
    Grogan JM, Schneider NM, Ross FM, Bau HH (2014) Bubble and pattern formation in liquid induced by an electron beam. Nano Lett 14:359–364CrossRefGoogle Scholar
  78. 78.
    Ahmad N, Wang G, Nelayah J, Ricolleau C, Alloyeau D (2018) Driving reversible redox reactions at solid-liquid interfaces with the electron beam of a transmission electron microscope. J Microsc 269(2):127–133Google Scholar
  79. 79.
    Leenheer AJ, Jungjohann KL, Zavadil KR, Sullivan JP, Harris CT (2015) Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy. ACS Nano 9:4379–4389CrossRefGoogle Scholar
  80. 80.
    Pierson J, Sani M, Tomova C, Godsave S, Peters PJ (2009) Toward visualization of nanomachines in their native cellular environment. Histochem Cell Biol 132:253–262CrossRefGoogle Scholar
  81. 81.
    Evans JE, Jungjohann KL, Browning ND, Arslan I (2011) Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett 11:2809–2813CrossRefGoogle Scholar
  82. 82.
    White ER, Mecklenburg M, Singer SB, Aloni S, Regan BC (2011) Imaging nanobubbles in water with scanning transmission electron microscopy. Appl Phys Express 4:055201CrossRefGoogle Scholar
  83. 83.
    Egerton RF (2013) Control of radiation damage in the TEM. Ultramicroscopy 127:100–108CrossRefGoogle Scholar
  84. 84.
    Sun M, Liao H-G, Niu K, Zheng H (2013) Structural and morphological evolution of lead dendrites during electrochemical migration. Sci Rep 3:3227CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.SuperSTEM LaboratorySciTech Daresbury CampusDaresburyUK
  2. 2.Department of Chemical and Biomolecular EngineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations