Advertisement

Finitismus

  • Alexander George
  • Daniel J. Velleman
Chapter

Zusammenfassung

Der große deutsche Mathematiker David Hilbert (1862–1943) suchte nach einer Auflösung des festgefahrenen Konflikts zwischen der klassischen Mathematik und dem Intuitionismus. Für dieses Ziel arbeitete er ein umfangreiches Programm aus, in welchem zahlreiche philosophische sowie mathematische Ideen entwickelt und miteinander verknüpft wurden.

Wir beginnen am besten mit der Frage, welche Aspekte der klassischen Mathematik und des Intuitionismus Hilbert in Einklang bringen wollte. Hilbert hätte keine Lösung für die Grundlagen der Mathematik akzeptiert, die die Reichweite der Mathematik beschränkt hätte. Er wollte also den praktizierenden Mathematiker in seinem Vertrauen in die Verwendung fundamentaler Schlussregeln nicht stören; insbesondere der Satz vom ausgeschlossenen Dritten und jegliche Schlüsse, die hierauf beruhen, wie die Fallunterscheidung, mussten erhalten bleiben. „Dieses Tertium non datur dem Mathematiker zu nehmen,“ sagte Hilbert „wäre etwa, wie wenn man dem Astronomen das Fernrohr oder dem Boxer den Gebrauch der Fäuste untersagen wollte.“ Außerdem sollte kein Zweifel daran bestehen, dass die klassische Akzeptanz der absoluten Unendlichkeit legitim sei: „Die mathematische Analysis [ist] gewissermaßen eine einzige Symphonie des Unendlichen.“ Hilbert wäre nicht bereit gewesen, eine Rechtfertigung von etwas, was nur einen Teil der Mathematik des alltäglich praktizierenden Mathematikers beinhaltete, gut zu heißen.

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Alexander George
    • 1
  • Daniel J. Velleman
    • 2
  1. 1.Dept of PhilosophyAmherst CollegeAmherstUSA
  2. 2.Dept of Mathematics and StatisticsAmherst CollegeAmherstUSA

Personalised recommendations