Skip to main content

Dynamic Global Vegetation Models

Contribution by S. Zaehle

  • Chapter
  • First Online:
Plant Ecology

Abstract

In this chapter, dynamic global vegetation models (DGVMs) are described. These models mathematically represent the global biosphere and are also able to model vegetation dynamics, that is, the transient development of vegetation composition and structure. First, an overview of current DGVMs and their structure is given. Then the representation of major biogeochemical cycles (carbon, water and nutrients) is explained. Moreover, the concept of plant functional types in models is introduced and applied to scale up from plant to global communities. How to represent disturbances and land-use change is also explained. Furthermore, current shortcomings and challenges in developing a predictive understanding of the terrestrial biosphere are discussed, in particular in terms of available input data from global observations and ecosystem experiments. This knowledge is then used and applied to both past and future climate conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arneth A, Sitch SA, Bondeau A, Butterbach-Bahl K, Foster P, Gedney N, de Noblet-Ducoudré N, Prentice IC, Sanderson M, Thonicke K, Wania R, Zaehle S (2010) From biota to chemistry and climate: towards a comprehensive description of trace gas exchange between the biosphere and atmosphere. Biogeosciences 7:121–149

    Article  CAS  Google Scholar 

  • Arora VK, Boer GJ, Freidlingstein P, Eby M, Jones CD, Christian JR, Bonan G, Bopp L, Brovkin V, Cadule P, Hajima T, Ilyina T, Lindsay K, Tjiputra JF, Wu T (2013) Carbon-concentration and carbon-climate feedbacks in CMIP5 Earth system models. J Clim 26:5289–5214

    Article  Google Scholar 

  • Bachelet D, Neilson RP, Thomas H, Drapek RJ, Lenihan JM, Sykes MT, Smith B, Sitch S, Thonicke K (2003) Simulating past and future dynamics of natural ecosystems in the United States. Glob Biogeochem Cycles 17:1045

    Article  CAS  Google Scholar 

  • Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Change Biol 9:479–492

    Article  Google Scholar 

  • Ball J, Wooddrow I, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggens J (ed) Progress in photosynthesis research, vol 4. Springer, Dordrecht, The Netherlands, pp 221–224

    Chapter  Google Scholar 

  • Bellassen V, Viovy N, Luyssaert S, Maire G, Schelhaas M-J, Ciais P (2011) Reconstruction and attribution of the carbon sink of European forests between 1950 and 2000. Glob Change Biol 17:3274–3292

    Article  Google Scholar 

  • Bonan GB, Levis S (2006) Evaluating aspects of the community and atmosphere models (CLM3 and CAM3) using a dynamic global vegetation model. J Clim 10:2290–2301

    Article  Google Scholar 

  • Bondeau A, Smith PC, Zaehle S, Schaphoff S, Lucht W, Cramer W, Gerten D (2007) Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob Change Biol 13:679–706

    Article  Google Scholar 

  • Brovkin V, Raddatz T, Reick CH, Claussen M, Gayler V (2009) Global biogeophysical interactions between forest and climate. Geophys Res Lett 36:L07405

    Article  Google Scholar 

  • Buendía C, Kleidon A, Porporato A (2010) The role of tectonic uplift, climate, and vegetation in the long-term terrestrial phosphorous cycle. Biogeosciences 7:2025–2038

    Article  CAS  Google Scholar 

  • Cox PM (2001) Description of the TRIFFID dynamic global vegetation model. In: Hadley Centre technical note, vol 24. Met Office, UK

    Google Scholar 

  • Dalmonech D, Zaehle S (2013) Towards a more objective evaluation of modelled land-carbon trends using atmospheric CO2 and satellite-based vegetation activity observations. Biogeosciences 10:4189–4210

    Article  CAS  Google Scholar 

  • Dargaville RJ, Heimann M, McGuire AD, Prentice IC, Kicklighter DW, Joos F, Clein JS, Esser G, Foley J, Kaplan J, Meier RA, Melillo JM, Moore B III, Ramankutty N, Reichenau T, Schloss A, Sitch S, Tian H, Williams LJ, Wittenberg U (2002) Evaluation of terrestrial carbon cycle models with atmospheric CO2 measurements: results from transient simulations considering increasing CO2, climate, and land-use effects. Glob Biogeochem Cycles 16:1092

    Article  CAS  Google Scholar 

  • De Kauwe M, Medlyn BE, Zaehle S, Walker AP, Dietze MC, Hickler T, Jain AK, Luo Y, Parton WJ, Prentice IC, Smith BLU, Thornton PE, Wang S, Wang Y-P, Wårlind DLU, Weng E, Crous KY, Ellsworth DS, Hanson PJ, Seok H-K, Warren JM, Oren R, Norby RJ (2013) Forest water use and water use efficiency at elevated CO2: a model-data intercomparison at two contrasting temperate forest FACE sites. Glob Change Biol 19:1759–1779

    Article  Google Scholar 

  • Drake JE, Gallet-Budynek A, Hofmockel KS, Bernhardt ES, Billings SA, Jackson RB, Johnsen KS, Lichter J, McCarthy HR, McCormack ML, Moore DJ, Oren R, Palmroth S, Phillips RP, Pippen JS, Pritchard SG, Treseder KK, Schlesinger WH, Delucia EH, Finzi AC (2011) Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecol Lett 14:349–357

    Article  PubMed  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  PubMed  Google Scholar 

  • Fisher R, McDowell N, Purves D, Moorcroft P, Sitch S, Cox P, Huntingford C, Meir P, Woodward FI (2010) Assessing uncertainties in a second-generation dynamic vegetation model caused by ecological scale limitations. New Phytol 187:666–681

    Article  PubMed  Google Scholar 

  • Fisher RA, Koven CD, Anderegg WRL, Christoffersen BO, Dietze MC, Farrior CE, Holm JA, Hurtt GC, Knox RG, Lawrence PJ, Lichstein JW, Longo M, Matheny AM, Medvigy D, Muller-Landau HC, Powell TL, Serbin SP, Sato H, Shuman JK, Smith B, Trugman A, Viskari T, Verbeeck H, Weng E, Xu C, Xu X, Zhang T, Moorcroft PR (2018) Vegetation demographics in Earth System Models: a review of progress and priorities. Global Change Biol 24:35–54

    Article  PubMed  Google Scholar 

  • Forkel M, Carvalhais N, Verbesselt J, Mahecha M, Neigh C, Reichstein M (2013) Trend change detection in NDVI time series: effects of inter-annual variability and methodology. Remote Sens 5:2113–2144

    Article  Google Scholar 

  • Franklin O, Johansson J, Dewar RC, Dieckmann U, McMurtrie RE, Brannstrom A, Dybzinski R (2012) Modeling carbon allocation in trees: a search for principles. Tree Physiol 32:648–666

    Article  CAS  PubMed  Google Scholar 

  • Friedlingstein P, Cox PM, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler K-G, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19:3337–33504

    Article  Google Scholar 

  • Friend AD (2001) Modelling canopy CO2 fluxes: are “big-leaf” simplifications justified? Glob Ecol Biogeogr 10:603–619

    Article  Google Scholar 

  • Friend AD, Stevens AK, Knox RG, Cannell MGR (1997) A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0). Ecol Model 95:249–287

    Article  CAS  Google Scholar 

  • Friend AD, Arneth A, Kiang NY, Lomas M, Ogée J, Rödenbeck C, Running SW, Santaren J-D, Sitch S, Viovy N, Woodward FI, Zaehle S (2007) FLUXNET and modelling the global carbon cycle. Glob Change Biol 13:610–633

    Article  Google Scholar 

  • Friend AD, Lucht W, Rademacher TT, Keribin R, Betts R, Cadule P, Ciais P, Clark DB, Dankers R, Falloon PD, Ito A, Kahana R, Kleidon A, Lomas MR, Nishina K, Ostberg S, Pavlick R, Peylin P, Schaphoff S, Vuichard N, Warszawski L, Wiltshire A, Woodward FI (2013) Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proc Natl Acad Sci 111:3280–3285

    Article  CAS  Google Scholar 

  • Gerber S, Hedin LO, Oppenheimer M, Pacala SW, Shevliakova E (2010) Nitrogen cycling and feedbacks in a global dynamic land model. Glob Biogeochem Cycles 24:GB1001

    Google Scholar 

  • Gerten D, Schaphoff S, Haberlandt U, Lucht W, Sitch SA (2004) Terrestrial vegetation and water balance – hydrological evaluation of a dynamic global vegetation model. J Hydrol 286:249–270

    Article  CAS  Google Scholar 

  • Graven HD, Keeling RF, Piper SC, Patra PK, Stephens BB, Wofsy SC, Welp LR, Sweeney C, Tans PP, Kelley JJ, Daube C, Kort EA, Santoni GW, Bent JD (2013) Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341:1085–1089

    Article  CAS  PubMed  Google Scholar 

  • Guanter L, Zhang Y, Jung M, Joiner J, Voigt M, Berry JA, Frankenberg C, Huete A, Zarco-Tejada P, Lee J-E, Moran S, Ponce-Campos G, Beer C, Camps-Valls G, Buchmann N, Gianelle D, Klumpp K, Cescatti A, Baker JM, Griffis TJ (2014) Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc Natl Acad Sci 111:E1327–E1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurney KR, Law RM, Denning AS, Rayner PJ, Pak BC, Baker D, Bousquet P, Bruhwiler L, Chen Y-H, Ciais P, Fung IY, Heimann M, John J, Maki T, Maksyutov S, Peylin P, Prather M, Taguchi S (2004) Transcom 3 inversion intercomparison: model mean results for the estimation of seasonal carbon sources and sinks. Glob Biogeochem Cycles 18:GB1010

    Article  CAS  Google Scholar 

  • Hartig F, Dyke J, Thomas H, Higgins SI, O’Hara RB, Scheiter S, Huth A (2012) Connecting dynamic vegetation models to data – an inverse perspective. J Biogeogr 39:2240–2252

    Article  Google Scholar 

  • Heimann M, Esser G, Haxeltine A, Kaduk J, Kicklighter DW, Knorr W, Kohlmaier GH, McGuire AD, Melillo J, Moore B III, Ottofi RD, Prentice IC, Sauf W, Schloss A, Sitch S, Wittenberg U, Würth G (1998) Evaluation of terrestrial carbon cycle models through simulations of the seasonal cycle of atmospheric CO2: first results of a model intercomparison study. Glob Biogeochem Cycles 12:1–24

    Article  CAS  Google Scholar 

  • Hickler T, Prentice IC, Smith B, Sykes MT, Zaehle S (2006) Implementing plant hydraulic architecture within the LPJ dynamic global vegetation model. Glob Ecol Biogeogr 15:567–577

    Article  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792

    Article  PubMed  Google Scholar 

  • Huntingford C, Zelazowski P, Galbraith D, Mercado LM, Sitch S, Rosie Fisher R, Lomas M, Walker AP, Jones CD, Booth BBB, Malhi Y, Hemming D, Kay G, Good P, Lewis SL, Phillips OL, Atkin OK, Lloyd J, Gloor E, Zaragoza-Castells J, Meir P, Betts R, Harris PP, Nobre C, Marengo J, Cox PM (2013) Simulated resilience of tropical rainforests to CO2-induced climate change. Nat Geosci 6:268–273

    Article  CAS  Google Scholar 

  • Hurtt GC, Frolking S, Fearon MG, Moore B, Shevliakova E, Malyshev S, Pacala SW, Houghton RA (2006) The underpinnings of land-use history: three centuries of global gridded land-use transitions, wood-harvest activity, and resulting secondary lands. Glob Change Biol 12:1208–1229

    Article  Google Scholar 

  • Jung M, Reichstein M, Bondeau A (2009) Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model. Biogeosciences 6:2001–2013

    Article  CAS  Google Scholar 

  • Jung M, Reichstein M, Margolis HA, Cescatti A, Richardson AD, Arain MA, Arneth A, Bernhofer C, Bonal D, Chen J, Gianelle D, Gobron N, Kiely G, Kutsch W, Lasslop G, Law BE, Lindroth A, Merbold L, Montagnani L, Moors EJ, Papale D, Sottocornola M, Vaccari F, Williams C (2011) Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J Geophys Res 116:G00J07

    Article  Google Scholar 

  • Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, Garnier E, Westoby M, Reich PB, Wright IJ, Cornelissen JHC, Violle C, Harrison SP, van Bodegom PM, Reichstein M, Enquist BJ, Soudzilovskaia NA, Ackerly D, Bekker R, Blanco CC, Bloder B, Bond WJ, Bradstock R, Bunker DE, Casanoves F, Covender-Bares J, Chambers JQ, Chapin FS III, Chave J, Coomes D, Cornwell WK, Craine JM, Dobrin BH, Duarte L, Durka W, Elser J, Esser G, Estiarte M, Fagan WF, Fang J, Fernàndez-Méndez F, Fidelis A, Finegan B, Flore O, Ford H, Frank D, Freschet GR, Fyllas NM, Gallagher RV, Green WA, Gutierrez AG, Hickler T, Higgins SI, Hodgson JG, Jalili A, Jansen S, Joly CA, Kerkhoff AJ, Kirkup D, Kitajima K, Kleyer M, Klotz S, Knops JMH, Kramer K, Kühn I, Kurokawa H, Laughlin D, Lee TD, Leishman M, Lens F, Lenz T, Lewis SL, Lloyd J, Llusìa J, Louault F, Ma S, Mahecha MD, Manning P, Massad T, Medlyn BE, Messier J, Moles AT, Müller SC, Nadrowski K, Naeem S, Niinemets Ü, Nöllert S, Nüske A, Ogaya R, Oleksyn J, Onipchenko VG, Onoda Y, Ordoñez J, Overbeck G, Ozinga WA, Patiño S, Paula S, Pausas JG, Peñulas J, Phillips OL, Pillar V, Poorter H, Poorter L, Poschlod P, Prinzing A, Proulx R, Rammig A, Reinsch S, Reu B, Sack L, Sagado-Negret B, Sardans J, Shiodera S, Shipley B, Siefert A, Sosinski E, Soussana J-F, Swaine E, Swenson N, Thompson K, Thornton P, Waldram M, Weiher E, White M, White S, Wright SJ, Yguel B, Zaehle S, Zanne AE, Wirth C (2011) TRY – a global database of plant traits. Glob Change Biol 17:2905–2935

    Article  Google Scholar 

  • Kelley DI, Prentice IC, Harrison SP, Wang H, Simard M, Fisher JB, Willis KO (2013) A comprehensive benchmarking system for evaluating global vegetation models. Biogeosciences 10:3313–3340

    Article  Google Scholar 

  • Knorr W (2000) Annual and interannual CO2 exchanges of the terrestrial biosphere: process-based simulations and uncertainty. Glob Ecol Biogeogr 9:225–252

    Article  Google Scholar 

  • Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob Biogeochem Cycles 19:GB1015

    Article  CAS  Google Scholar 

  • Kucharik CJ, Foley JA, Delire C, Fisher VA, Coe MT, Lenters JD, Young-Molling C, Ramank N (2000) Testing the performance of a Dynamic Global Ecosystem Model: water balance, carbon balance, and vegetation structure. Glob Biogeochem Cycles 14:795–825

    Article  CAS  Google Scholar 

  • Lavorel S, Díaz S, Cornelissen H, Garnier HSP, McIntyrE S, Pausas JG, Pérez-Harguindeguy N, Roumet C, Urcelay C (2007) Plant functional types: are we getting any closer to the Holy Grail? In: Canadell JG, Pataki D, Pitelka L (eds) Terrestrial ecosystems in a changing world. Springer, Berlin, pp 149–164

    Google Scholar 

  • Le Quéré C, Andres RJ, Boden T, Conway T, Houghton RA, House JI, Marland G, Peters GP, van der Werf GR, Ahlström A, Andrew RM, Bopp L, Canadell JG, Ciais P, Doney SC, Enright C, Friedlingstein P, Huntingford C, Jain AK, Jourdain C, Kato E, Keeling RF, Klein Goldewijk K, Levis S, Levy P, Lomas M, Poulter B, Raupach MR, Schwinger J, Sitch S, Stocker BD, Viovy N, Zaehle S, Zeng N (2013) The global carbon budget 1959–2011. Earth Syst Sci Data 5:165–185

    Article  Google Scholar 

  • Le Quéré C, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Peters GP, Manning AC, Boden TA, Tans PP, Houghton RA, Keeling RF, Alin S, Andrews OD, Anthoni P, Barbero L, Bopp L, Chevallier F, Chini LP, Ciais P, Currie K, Delire C, Doney SC, Friedlingstein P, Gkritzalis T, Harris I, Hauck J, Haverd V, Hoppema M, Klein Goldewijk K, Jain AK, Kato E, Körtzinger A, Landschützer P, Lefèvre N, Lenton A, Lienert S, Lombardozzi D, Melton JR, Metzl N, Millero F, Monteiro PMS, Munro DR, Nabel JEMS, Nakaoka S, O’Brien K, Olsen A, Omar AM, Ono T, Pierrot D, Poulter B, Rödenbeck C, Salisbury J, Schuster U, Schwinger J, Séférian R, Skjelvan I, Stocker BD, Sutton AJ, Takahashi T, Tian H, Tilbrook B, van der Laan-Luijkx IT, van der Werf GR, Viovy N, Walker AP, Wiltshire AJ, Zaehle S (2016) Global carbon budget 2016. Earth Syst Sci Data 8:605–649

    Article  Google Scholar 

  • Lischke H, Zimmermann NE, Bolliger J, Rickebusch S, Löffler TJ (2006) TreeMig: a forest-landscape model for simulating spatio-temporal patterns from stand to landscape scale. Ecol Model 199:409–420

    Article  Google Scholar 

  • Lloyd J (1999) The CO2 dependence of photosynthesis, plant growth responses to elevated CO2 concentrations and their interaction with soil nutrient status, II. Temperate and boreal forest productivity and the combined effects of increasing CO2 concentrations and increased nitrogen deposition at a global scale. Funct Ecol 13:439–459

    Article  Google Scholar 

  • Luo YQ, Randerson JT, Abramowitz G, Bacour C, Blyth E, Carvalhais N, Ciais P, Dalmonech D, Fisher JB, Fisher R, Friedlingstein P, Hibbard K, Hoffman F, Huntzinger D, Jones CD, Koven C, Lawrence D, Li DJ, Mahecha M, Niu SL, Norby R, Piao SL, Qi X, Peylin P, Prentice IC, Riley W, Reichstein M, Schwalm C, Wang YP, Xia JY, Zaehle S, Zhou XH (2012) A framework for benchmarking land models. Biogeosciences 9:3857–3874

    Article  Google Scholar 

  • Luyssaert S, Inglima I, Jung M, Richardson AD, Reichstein M, Papale D, Piao SL, Schulze ED, Wingate L, Matteucci G, Aragao LEOC, Aubinet M, Beers C, Bernhofer C, Black GK, Bonal D, Bonnefond JM, Chambers J, Ciais P, Cook B, Davis KS, Dolman AJ, Gielen B, Goulden M, Grace J, Granier A, Grelle A, Griffis T, Grünwald T, Guidolotti G, Hanson PJ, Harding R, Hollinger DY, Hutyra LR, Kolari P, Kruijt B, Kutsch WL, Lagergren F, Laurila T, Law B, Le Maire G, Lindroth A, Loustau D, Malhi Y, Mateu J, Migliavacca M, Misson L, Montagnani L, Moncrieff J, Moors EJ, Munger JW, Nikinmaa E, Ollinger SV, Pita G, Rebmann C, Roupsard O (2007) CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob Change Biol 13:2509–2537

    Article  Google Scholar 

  • Manzoni S, Taylor P, Richter A, Porporato A, Agren GI (2012) Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol 196:79–91

    Article  CAS  PubMed  Google Scholar 

  • McDowell NG, Fisher RA, Xu C, Domec JC, Hölttä T, Mackay DS, Sperry JS, Boutz A, Dickman L, Gehres N, Limousin JM, Macalady A, Martínez-Vilalta J, Mencuccini M, Plaut JA, Ogée J, Pangle RE, Rasse DP, Ryan MG, Sevanto S, Waring RH, Williams AP, Yepez EA, Pockman WT (2013) Evaluating theories of drought-induced vegetation mortality using a multimodel-experiment framework. New Phytol 200:304–321

    Article  CAS  PubMed  Google Scholar 

  • McGuire AD, Sitch SA, Clein JS, Dargaville R, Esser G, Foley J, Heimann M, Joos F, Kaplan J, Kicklighter DW, Meier RA, Melillo JM, Moore B, Prentice IC, Ramankutty N, Reichenau T, Schloss A, Tian H, Williams LJ, Wittenberg U (2001) Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land use effects with four process-based ecosystem models. Glob Biogeochem Cycles 15:183–206

    Article  CAS  Google Scholar 

  • Medlyn BE, Duursmara RA, De Kauwe MG, Prentice IC (2013) The optimal stomatal response to atmospheric CO2 concentration: alternative solutions, alternative interpretations. Agric For Meteorol 182–183:200–203

    Article  Google Scholar 

  • Medvigy D, Wofsy SC, Munger JW, Hollinger DY, Moorcroft PR (2009) Mechanistic scaling of ecosystem function and dynamics in space and time: ecosystem demography model version 2. J Geophys Res 114:G01002

    Article  Google Scholar 

  • Melillo JM, Butler S, Johnson J, Mohan J, Steudler P, Lux H, Burrows E, Bowles F, Smith R, Scott L, Vario C, Hill T, Burton A, Zhou YM, Tang J (2011) Soil warming, carbon-nitrogen interactions, and forest carbon budgets. Proc Natl Acad Sci 108:9508–9512

    Article  CAS  Google Scholar 

  • Moffat AM, Papale D, Reichstein M, Hollinger DY, Richardson AD, Barr AG, Beckstein C, Braswell BH, Churkina G, Desai AR, Falge E, Gove JH, Heimann M, Hui DF, Jarvis AJ, Kattge J, Noormets A, Stauch VJ (2007) Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agric For Meteorol 147:209–232

    Article  Google Scholar 

  • Ni J, Harrison SP, Prentice IC, Kutzbach JE, Sitch SA (2006) Impact of climate variability on present and Holocene vegetation: a model-based study. Ecol Model 191:469–486

    Article  Google Scholar 

  • Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, De Angelis P, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza GE, Schlesinger WH, Oren R (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci 102:18052–18056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okin GS, Mahowald N, Chadwick OA, Artaxo P (2004) Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Glob Biogeochem Cycles 18:GB2005

    Article  CAS  Google Scholar 

  • Olson JR, Scurlock J, Prince SD, Zheng DL, Johnson KR (2013) NPP Multi-Biome: NPP and driver data for ecosystem model-data intercomparison, R2. ORNL DAAC, Oak Ridge, TN. Data set

    Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao SL, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  CAS  PubMed  Google Scholar 

  • Parton WJ, Scurlock JMO, Ojima DS, Gilmanov TG, Scholes RJ, Schimel DS, Kirchner T, Menaut JC, Seastedt T, Moya EG, Kamnalrut A, Kinyamario JI (1993) Observations and modelling of biomass and soil organic matter dynamics for the grassland biome worldwide. Glob Biogeochem Cycles 7:785–809

    Article  CAS  Google Scholar 

  • Pavlick R, Drewry DT, Bohn K, Reu B, Kleidon A (2013) The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM): a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs. Biogeosciences 10:4137–4177

    Article  Google Scholar 

  • Peylin P, Bousquet P, Le Quéré C, Sitch S, Friedlingstein P, McKinley G, Gruber N, Rayner P, Ciais P (2005) Multiple constraints on regional CO2 flux variations over land and oceans. Glob Biogeochem Cycles 19:GB1011

    Article  CAS  Google Scholar 

  • Prentice IC, Cowling SA (2012) Dynamic global vegetation models. In: Levin S (ed) Encyclopedia of biodiversity. Elsevier Publishing, New York, pp 670–689

    Chapter  Google Scholar 

  • Prentice IC, Heimann M, Sitch SA (2000) The carbon balance of the terrestrial biosphere: ecosystem models and atmospheric observations. Ecol Appl 10:1553–1573

    Article  Google Scholar 

  • Prentice IC, Bondeau A, Cramer W, Harrison SP, Hickler T, Lucht W, Sitch S, Smith B, Sykes MT (2007) Dynamic global vegetation modelling: quantifying terrestrial ecosystem responses to large-scale environmental change. In: Canadell JG, Pataki DE, Pitelka L (eds) Terrestrial ecosystems in a changing world. Springer, Berlin, pp 175–192

    Google Scholar 

  • Prentice IC, Harrison SP, Bartlein PJ (2011) Global vegetation and terrestrial carbon cycle changes after the last ice age. New Phytol 189:988–998

    Article  CAS  PubMed  Google Scholar 

  • Prentice IC, Dong N, Gleason SM, Maire V, Wright IJ (2014) Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecol Lett 17:82–91

    Article  PubMed  Google Scholar 

  • Purves DW, Lichstein JW, Strigul N, Pacala SW (2008) Predicting and understanding forest dynamics using a simple tractable model. Proc Natl Acad Sci 105:17018–17022

    Article  CAS  Google Scholar 

  • Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ETA, Salas W, Zutta BR, Buermann W, Lewis SL, Hagen S, Petrova S, White L, Silman M, Morel A (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 108:9899–9925

    Article  CAS  Google Scholar 

  • Sato H, Itoh A, Kohyama T (2007) SEIB–DGVM: a new Dynamic Global Vegetation Model using a spatially explicit individual-based approach. Ecol Model 200:279–307

    Article  Google Scholar 

  • Scheiter S, Higgins SI, Osborne CP, Bradshaw C, Lunt D, Ripley BS, Taylor LL, Beerling DJ (2012) Fire and fire-adapted vegetation promoted C4 expansion in the late Miocene. New Phytol 195:653–666

    Article  PubMed  Google Scholar 

  • Scheiter S, Langan L, Higgins SI (2013) Next-generation dynamic global vegetation models: learning from community ecology. New Phytol 198:957–969

    Article  PubMed  Google Scholar 

  • Schröter D, Cramer W, Leemans R, Prentice IC, Araujo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA, de la Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpaa S, Klein RJT, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabate S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337

    Article  PubMed  CAS  Google Scholar 

  • Sellers PJ (1985) Canopy reflectance, photosynthesis and transpiration. Int J Remote Sens 6:1335–1372

    Article  Google Scholar 

  • Shevliakova E, Pacala SW, Malyshev S, Hurtt GC, Milly PCD, Caspersen JP, Sentman LT, Fisk JP, Wirth C, Crevoisier C (2009) Carbon cycling under 300 years of land use change: importance of the secondary vegetation sink. Glob Biogeochem Cycles 23:GB2022

    Article  CAS  Google Scholar 

  • Shinozaki K, Yoda K, Hozumi K, Kira T (1964) A quantitative analysis of the plant form – the pipe model theory. Jpn J Ecol 14:98–104

    Google Scholar 

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ Dynamic Global Vegetation Model. Glob Change Biol 9:161–185

    Article  Google Scholar 

  • Sitch S, Huntingford C, Gedney N, Levy PE, Lomas M, Piao SL, Betts R, Ciais P, Cox P, Friedlingstein P, Jones CD, Prentice IC, Woodward FI (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob Change Biol 14:2015–2039

    Article  Google Scholar 

  • Smith B, Prentice IC, Sykes MT (2001) Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Glob Ecol Biogeogr 10:621–637

    Article  Google Scholar 

  • Smith PC, de Noblet-Ducoudre N, CIais P, Peylin P, Viovy N, Meurdesoif Y, Bondeau A (2010) European-wide simulations of croplands using an improved terrestrial biosphere model: phenology and productivity. J Geophys Res 115:G01014

    Article  Google Scholar 

  • Smith B, Wårlind D, Arneth A, Thomas H, Leadley P, Siltberg J, Zaehle S (2014) Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11:2027–2054

    Article  Google Scholar 

  • Spitters CJT, Toussaint H, Goudriaan JD (1986) Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis. 1. Components of incoming radiation. Agric For Meteorol 38:217–229

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Thomas RQ, Zaehle S, Templer PH, Goodale CL (2013) Global patterns of nitrogen limitation: confronting two global biogeochemical models with observations. Glob Change Biol 19:2986–2998

    Article  Google Scholar 

  • Thonicke K, Venevsky S, Sitch SA, Cramer W (2001) The role of fire disturbance for global vegetation dynamics: coupling fire into a Dynamic Global Vegetation Model. Glob Ecol Biogeogr 10:661–677

    Article  Google Scholar 

  • Thonicke K, Spessa A, Prentice IC, Harrison SP, Dong L, Carmona-Moreno C (2010) The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model. Biogeosciences 7:1991–2011

    Article  CAS  Google Scholar 

  • Thornley J, Cannell MGR (2000) Modelling the components of plant respiration: representation and realism. Ann Bot 85:55–67

    Article  CAS  Google Scholar 

  • Thornton PE, Lamarque J-F, Rosenbloom NA, Mahowald NM (2007) Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Glob Biogeochem Cycles 21:GB4018

    Article  CAS  Google Scholar 

  • Tucker C, Pinzon J, Brown M, Slayback DA, Pak EW, Mahoney R, Vermote EF, El Saleous N (2005) An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int J Remote Sens 26:4485–4498

    Article  Google Scholar 

  • Venevsky S, Thonicke K, Sitch SA, Cramer W (2002) Simulating fire regimes in human-dominated ecosystems: Iberian Peninsula case study. Glob Change Biol 8:984–998

    Article  Google Scholar 

  • Verma M, Friedl MA, Richardson AD, Kiely G, Cescatti A, Law BE, Wohlfahrt G, Gielen B, Roupsard O, Moors EJ, Toscano P, Vaccari FP, Gianelle D, Bohrer G, Varlagin A, Buchmann N, van Gorsel E, Montagnani L, Propastin P (2014) Remote sensing of annual terrestrial gross primary productivity from MODIS: an assessment using the FLUXNET La Thuile dataset. Biogeosciences 11:2185–2200

    Article  Google Scholar 

  • Vicca S, Gilgen AK, Serrano MC, Dreesen FE, Dukes JS, Estiarte M, Gray SB, Guidolotti G, Hoeppner SS, Leakey ADB, Ogaya R, Ort DR, Ostrogovic MZ, Rambal S, Sardans J, Schmitt M, Siebers M, van der Linden L, van Straaten O, Granier A (2012) Urgent need for a common metric to make precipitation manipulation experiments comparable. New Phytol 195:518–522

    Article  CAS  PubMed  Google Scholar 

  • Wang YP, Law RM, Pak B (2010) A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 7:2261–2282

    Article  CAS  Google Scholar 

  • Wang X, Piao SL, Ciais P, Friedlingstein P, Myneni RB, Cox P, Heimann M, Miller J, Peng SS, Wang T, Yang H, Chen AP (2014) A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature 506:212–215

    Article  CAS  PubMed  Google Scholar 

  • Westoby M (1984) The self-thinning rule. Adv Ecol Res 14:167–225

    Article  Google Scholar 

  • Wieder WR, Bonan GB, Allison SD (2013) Global soil carbon projections are improved by modelling microbial processes. Nat Clim Chang 3:1–4

    Article  CAS  Google Scholar 

  • Woodward FI, Smith TM, Emanuel WR (1995) A global land primary productivity and phytogeography model. Glob Biogeochem Cycles 9:471–490

    Article  CAS  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Xia J, Luo Y, Niu S, Ciais P, Janssens I, Chen J, Ammann C, Blanken PD, Cescatti A, Bonal D, Buchmann N, Curtis PS, Chen S, Dong J, Flanagan LB, Frankenberg C, Georgiadis T, Gough CM, Hui D, Kiely G, Li J, Lund M, Magliulo V, Marcolla B, Merbold L, Montagnani L, Moors E, Olesen JE, Piao S, Raschi A, Roupsard O, Suyker A, Urbaniak M, Vaccari F, Varlagi A, Vesala T, Wilkinson M, Weng E, Wohlfahrt G, Yan L (2015) Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proc Natl Acad Sci 112:2788–2793

    Article  CAS  Google Scholar 

  • Yang X, Post WM, Thornton PE, Jain A (2013) The distribution of soil phosphorus for global biogeochemical modeling. Biogeosciences 10:2525–2537

    Article  CAS  Google Scholar 

  • Zaehle S (2013) Terrestrial nitrogen-carbon cycle interactions at the global scale. Philos Trans R Soc London Ser B 368:20130125

    Article  CAS  Google Scholar 

  • Zaehle S, Dalmonech D (2011) Carbon–nitrogen interactions on land at global scales: current understanding in modelling climate biosphere feedbacks. Curr Opin Environ Sustain 3:311–320

    Article  Google Scholar 

  • Zaehle S, Friend AD (2010) Carbon and nitrogen cycle dynamics in the O─CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates. Glob Biogeochem Cycles 24:GB1005

    Google Scholar 

  • Zaehle S, Sitch SA, Prentice IC, Liski J, Cramer W, Erhard M, Hickler T, Smith B (2006) The importance of age-related decline in forest NPP for modeling regional carbon balances. Ecol Appl 16:1555–1574

    Article  PubMed  Google Scholar 

  • Zaehle S, Friend AD, Friedlingstein P, Dentener F, Peylin P, Schulz M (2010) Carbon and nitrogen cycle dynamics in the O─CN land surface model: 2. Role of the nitrogen cycle in the historical terrestrial carbon balance. Glob Biogeochem Cycles 24:GB1005

    Google Scholar 

  • Zaehle S, Ciais P, Friend AD, Prieur V (2011) Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions. Nat Geosci 4:601–605

    Article  CAS  Google Scholar 

  • Zaehle S, Medlyn BE, De Kauwe MG, Walker AP, Dietze MC, Hickler T, Luo YQ, Wang YP, El-Masri B, Thornton P, Jain A, Wang SS, Warlind D, Weng ES, Parton W, Iversen CM, Gallet-Budynek A, McCarthy H, Finzi AC, Hanson PJ, Prentice IC, Oren R, Norby RJ (2014) Evaluation of 11 terrestrial carbon-nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies. New Phytol 202:803–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schulze, ED., Beck, E., Buchmann, N., Clemens, S., Müller-Hohenstein, K., Scherer-Lorenzen, M. (2019). Dynamic Global Vegetation Models. In: Plant Ecology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56233-8_22

Download citation

Publish with us

Policies and ethics