Skip to main content

General Themes of Molecular Stress Physiology

  • Chapter
  • First Online:

Abstract

In this chapter we introduce stress as an ever-present condition of plant life. The various strategies used by plants to cope with fluctuating environmental conditions are defined. An understanding of molecular stress physiology is facilitated by differentiating the responses of an individual (acclimation) from evolutionary processes at the population and species levels (adaptation). Stress tolerance and avoidance reactions of a plant involve a number of common features independent of the type of stress: sensing of environmental or internal changes, long-distance transfer of information between organs and tissues, signal transduction cascades at the cellular level, transcriptional control and the occurrence of oxidative stress. The essential role of model systems in elucidating the molecular mechanisms underlying these processes is explained. Another integral part of stress responses is the modulation of growth, that is, a change in resource allocation in favour of stress resistance. A second major strategy, besides stress resistance, that enables a plant to survive and reproduce in a particular environment is escape from unfavourable conditions. Escape is possible through the anticipation of seasonal changes and the timing of key developmental transitions, such as germination, in response to environmental factors. Anticipation is made possible by the biological clock and photoperiodism. Both are molecularly understood quite well now and are discussed here alongside the winter memory of plants and possible trans-generational stress memory phenomena.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achard P, Cheng H, De Grauwe L et al (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    Article  CAS  PubMed  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Amasino R (2010) Seasonal and developmental timing of flowering. Plant J 61:1001–1013

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • Assmann SM (2013) Natural variation in abiotic stress and climate change responses in Arabidopsis: implications for twenty-first-century agriculture. Int J Plant Sci 174:3–26

    Article  CAS  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Böhlenius H, Huang T, Charbonnel-Campaa L et al (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043

    Article  PubMed  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Buchanan B, Gruissem W, Jones R (2015) Biochemistry and molecular biology of plants, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Claeys H, Inzé D (2013) The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiol 162:1768–1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claeys H, Landeghem SV, Dubois M et al (2014) What is stress? Dose–response effects in commonly used in vitro stress assays. Plant Physiol 165:519–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clausen J, Keck D, Hiesey W (1947) Heredity of geographically and ecologically isolated races. Am Nat 81:114–133

    Article  CAS  PubMed  Google Scholar 

  • Colebrook EH, Thomas SG, Phillips AL, Hedden P (2014) The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol 217:67–75

    Article  CAS  PubMed  Google Scholar 

  • Darwin C (1880) The power of movement in plants. John Murray, London

    Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    Article  CAS  PubMed  Google Scholar 

  • Dodd AN, Salathia N, Hall A et al (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633

    Article  CAS  PubMed  Google Scholar 

  • Donohue K, Rubio de Casas R, Burghardt L et al (2010) Germination, postgermination adaptation, and species ecological ranges. Annu Rev Ecol Evol Syst 41:293–319

    Article  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415.

    Article  CAS  PubMed  Google Scholar 

  • Fitter A, Hay RKM (1987) Environmental physiology of plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD (2004) A compound from smoke that promotes seed germination. Science 305:977

    Article  CAS  PubMed  Google Scholar 

  • Gilroy S, Suzuki N, Miller G et al (2014) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci 19:623–630

    Article  CAS  PubMed  Google Scholar 

  • Goodspeed D, Chehab EW, Min-Venditti A et al (2012) Arabidopsis synchronizes jasmonate-mediated defense with insect circadian behavior. Proceedings of the National Academy of Sciences 109:4674–4677

    Article  CAS  Google Scholar 

  • Gould S, Lewontin R (1979) Spandrels of San Marco and the Panglossian paradigm—a critique of the adaptationist program. Proc R Soc Lond B Biol Sci 205:581–598

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen J (2000) Überleben in der Kälte—wie Pflanzen sich vor Froststress schützen. Biologie in unserer Zeit 30:24–34

    Article  CAS  Google Scholar 

  • Harmer SL, Hogenesch JB, Straume M et al (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110–2113

    Article  CAS  PubMed  Google Scholar 

  • Hilker M, Schwachtje J, Baier M et al (2016) Priming and memory of stress responses in organisms lacking a nervous system. Biol Rev 91:1118–1133

    Article  PubMed  Google Scholar 

  • Holdsworth MJ, Bentsink L, Soppe WJJ (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179:33–54

    Article  CAS  PubMed  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  CAS  PubMed  Google Scholar 

  • Hsu PY, Harmer SL (2014) Wheels within wheels: the plant circadian system. Trends Plant Sci 19:240–249

    Article  CAS  PubMed  Google Scholar 

  • Huber AE, Bauerle TL (2016) Long-distance plant signaling pathways in response to multiple stressors: the gap in knowledge. J Exp Bot 67:2063–2079

    Article  CAS  PubMed  Google Scholar 

  • Huijser P, Schmid M (2011) The control of developmental phase transitions in plants. Development 138:4117–4129

    Article  CAS  PubMed  Google Scholar 

  • Ishitani M, Xiong LM, Stevenson B, Zhu JK (1997) Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid–dependent and abscisic acid–independent pathways. Plant Cell 9:1935–1949

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iwasaki M, Paszkowski J (2014) Epigenetic memory in plants. EMBO J 33:1987–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johanson U, West J, Lister C et al (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290:344–347

    Article  CAS  PubMed  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B et al (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657

    Article  CAS  PubMed  Google Scholar 

  • Kilian J, Whitehead D, Horak J et al (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–363

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Weigel D (2007) Move on up, it’s time for change—mobile signals controlling photoperiod-dependent flowering. Genes Dev 21:2371–2384

    Article  CAS  PubMed  Google Scholar 

  • Kochian LV, Piñeros MA, Liu J, Magalhaes JV (2015) Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annu Rev Plant Biol 66:571–598

    Article  CAS  PubMed  Google Scholar 

  • Koornneef M, Hanhart CJ, van der Veen JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229:57–66

    Article  CAS  PubMed  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (2008) Plant physiological ecology, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Larcher W, Bodner M (1980) Dose-lethality nomogram for characterizing of the chilling susceptibility of tropical plants. Angew Bot 54:273–278

    Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses, 2nd edn. Academic Press, New York

    Google Scholar 

  • Lichtenthaler HK, Miehe JA (1997) Fluorescence imaging as a diagnostic tool for plant stress. Trends Plant Sci 2:316–320

    Article  Google Scholar 

  • Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17:9–15

    Article  CAS  PubMed  Google Scholar 

  • McAinsh MR, Pittman JK (2009) Shaping the calcium signature. New Phytol 181:275–294

    Article  CAS  PubMed  Google Scholar 

  • Mitchell-Olds T, Schmitt J (2006) Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441:947–952

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Blumwald E (2015) The roles of ROS and ABA in systemic acquired acclimation. Plant Cell 27:64–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson DC, Flematti GR, Ghisalberti EL et al (2012) Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annu Rev Plant Biol 63:107–130

    Article  CAS  PubMed  Google Scholar 

  • Pecinka A, Mittelsten Scheid O (2012) Stress-induced chromatin changes: a critical view on their heritability. Plant Cell Physiol 53:801–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierik R, Testerink C (2014) The art of being flexible: how to escape from shade, salt, and drought. Plant Physiol 166:5–22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Provart NJ, Alonso J, Assmann SM et al (2016) 50 years of Arabidopsis research: highlights and future directions. New Phytol 209:921–944

    Article  CAS  PubMed  Google Scholar 

  • Ryu S, Costa A, Xin Z, Li P (1995) Induction of cold-hardiness by salt stress involves synthesis of cold-responsive and abscisic acid–responsive proteins in potato (Solanum commersonii Dun). Plant Cell Physiol 36:1245–1251

    Google Scholar 

  • Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459:1071–1078

    Article  CAS  PubMed  Google Scholar 

  • Scheibe R, Beck E (2011) Drought, desiccation, and oxidative stress. In: Lüttge U, Beck E, Bartels D (eds) Plant desiccation tolerance, Ecol. Studies, vol 215. Springer, Berlin, Heidelberg, pp 209–231

    Chapter  Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V et al (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43

    Article  PubMed  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • Wang RH, Farrona S, Vincent C et al (2009) Pep1 regulates perennial flowering in Arabis alpina. Nature 459:423–427

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Barnaby JY, Tada Y et al (2011) Timing of plant immune responses by a central circadian regulator. Nature 470:110–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanovsky MJ, Kay SA (2002) Molecular basis of seasonal time measurement in Arabidopsis. Nature 419:308–312

    Article  CAS  PubMed  Google Scholar 

  • Zeevaart JAD (2006) Florigen coming of age after 70 years. Plant Cell 18:1783–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schulze, ED., Beck, E., Buchmann, N., Clemens, S., Müller-Hohenstein, K., Scherer-Lorenzen, M. (2019). General Themes of Molecular Stress Physiology. In: Plant Ecology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56233-8_2

Download citation

Publish with us

Policies and ethics