Dedifferentiation and Adipose Tissue

  • Xiaobing Fu
  • Andong Zhao
  • Tian Hu


The attempt of adipocyte dedifferentiation is not for fat tissue repair or regeneration, since few would like too much fat tissue in their body. Attention has been long attracted by white adipose tissue because of its reversible and great capacity for expansion, which appears to be permanent throughout adult life. Adipose tissue enlargement is the result of adipocyte hypertrophy and the recruitment and differentiation of regenerative precursors that are situated in the stromal vascular fraction. The capillary network’s development, however, is also required to guarantee adipose tissue remodeling. Indeed, a decisive link exists between the capillary network and adipose cells. Endothelial cells and adipocytes own a common progenitor. Such adipose lineage cells take part in vascular-like structure and enhance the neovascularization reaction in ischemic tissue. Adipocytes are ideal cell type for mesoderm-derived tissue repair and regeneration. The dedifferentiated fat cells have the ability to redifferentiate into osteoblasts, chondrocytes, smooth muscle cells, and neurons. Besides, the dedifferentiated fat cells show the advantages of easy accessibility, which could be a wonderful substitute of mesenchymal stem cells. The author has summarized relevant knowledges of dedifferentiated fat cells’ gene expression, underlying signaling mechanism and multilineage differentiation potentials. The application of these potentials could shed light on osteogenesis, chondrogenesis, angiogenesis, and neurogenesis.


Adipocyte dedifferentiation Dedifferentiated fat cells Multilineage differentiation potentials Cell-based therapy Regeneration 


  1. 1.
    Hausman GJ, Dodson MV. Stromal vascular cells and adipogenesis: cells within adipose depots regulate adipogenesis. J Genomics. 2013;1:56–66.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Otto TC, Lane MD. Adipose development: from stem cell to adipocyte. Crit Rev Biochem Mol Biol. 2005;40(4):229–42.CrossRefPubMedGoogle Scholar
  3. 3.
    Laflamme MA, Murry CE. Regenerating the heart. Nat Biotechnol. 2005;23(7):845–56.CrossRefPubMedGoogle Scholar
  4. 4.
    Dodson MV, Fernyhough ME, Vierck JL, Hausman GJ. Adipocytes may not be a terminally differentiated cell type: implications for animal production. Anim Sci. 2005;80:239–40.Google Scholar
  5. 5.
    Dodson MV, Hausman GJ, Guan L, Du M, Jiang Z. Potential impact of mature adipocyte dedifferentiation in terms of cell numbers. Int J Stem Cells. 2011;4(1):76–8.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Fernyhough ME, Vierck JL, Dodson MV. Assessing a non-traditional view of adipogenesis: adipocyte dedifferentiation--mountains or molehills? Cells Tissues Organs. 2006;182(3–4):226–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Fernyhough ME, Hausman GJ, Guan LL, Okine E, Moore SS, Dodson MV. Mature adipocytes may be a source of stem cells for tissue engineering. Biochem Biophys Res Commun. 2008;368(3):455–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Sugihara H, Yonemitsu N, Miyabara S, Yun K. Primary cultures of unilocular fat cells: characteristics of growth in vitro and changes in differentiation properties. Differentiation. 1986;31(1):42–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Sugihara H, Yonemitsu N, Miyabara S, Toda S. Proliferation of unilocular fat cells in the primary culture. J Lipid Res. 1987;28(9):1038–45.PubMedGoogle Scholar
  10. 10.
    Vierck JL, McNamara JP, Dodson MV. Proliferation and differentiation of progeny of ovine unilocular fat cells (adipofibroblasts). In Vitro Cell Dev Biol Anim. 1996;32(9):564–72.CrossRefPubMedGoogle Scholar
  11. 11.
    Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti S. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol Cell Physiol. 2000;279(3):C670–81.CrossRefPubMedGoogle Scholar
  12. 12.
    Matsumoto T, Kano K, Kondo D, Fukuda N, Iribe Y, Tanaka N, Matsubara Y, Sakuma T, Satomi A, Otaki M, Ryu J, Mugishima H. Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential. J Cell Physiol. 2008;215(1):210–22.CrossRefPubMedGoogle Scholar
  13. 13.
    Poloni A, Maurizi G, Leoni P, Serrani F, Mancini S, Frontini A, Zingaretti MC, Siquini W, Sarzani R, Cinti S. Human dedifferentiated adipocytes show similar properties to bone marrow-derived mesenchymal stem cells. Stem Cells. 2012;30(5):965–74.CrossRefPubMedGoogle Scholar
  14. 14.
    Ohta Y, Takenaga M, Tokura Y, Hamaguchi A, Matsumoto T, Kano K, Mugishima H, Okano H, Igarashi R. Mature adipocyte-derived cells, dedifferentiated fat cells (DFAT), promoted functional recovery from spinal cord injury-induced motor dysfunction in rats. Cell Transplant. 2008;17(8):877–86.CrossRefPubMedGoogle Scholar
  15. 15.
    Jumabay M, Abdmaulen R, Ly A, Cubberly MR, Shahmirian LJ, Heydarkhan-Hagvall S, Dumesic DA, Yao Y, Bostrom KI. Pluripotent stem cells derived from mouse and human white mature adipocytes. Stem Cells Transl Med. 2014;3(2):161–71.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Nobusue H, Endo T, Kano K. Establishment of a preadipocyte cell line derived from mature adipocytes of GFP transgenic mice and formation of adipose tissue. Cell Tissue Res. 2008;332(3):435–46.CrossRefPubMedGoogle Scholar
  17. 17.
    Nobusue H, Kano K. Establishment and characteristics of porcine preadipocyte cell lines derived from mature adipocytes. J Cell Biochem. 2010;109(3):542–52.PubMedGoogle Scholar
  18. 18.
    Wei S, Du M, Jiang Z, Duarte MS, Fernyhough-Culver M, Albrecht E, Will K, Zan L, Hausman GJ, Elabd EM, Bergen WG, Basu U, Dodson MV. Bovine dedifferentiated adipose tissue (DFAT) cells: DFAT cell isolation. Adipocytes. 2013;2(3):148–59.CrossRefGoogle Scholar
  19. 19.
    Wei S, Duarte MS, Du M, Paulino PVR, Jiang Z, Albrecht E, Fernyhough-Culver M, Zan L, Hausman GJ, Dodson MV. Bovine mature adipocytes readily return to a proliferative state. Tissue Cell. 2012;44(6):385–90.CrossRefPubMedGoogle Scholar
  20. 20.
    Kono S, Kazama T, Kano K, Harada K, Uechi M, Matsumoto T. Phenotypic and functional properties of feline dedifferentiated fat cells and adipose-derived stem cells. Vet J. 2014;199(1):88–96.CrossRefPubMedGoogle Scholar
  21. 21.
    Tholpady SS, Aojanepong C, Llull R, Jeong JH, Mason AC, Futrell JW, Ogle RC, Katz AJ. The cellular plasticity of human adipocytes. Ann Plast Surg. 2005;54(6):651–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Hildner F, Concaro S, Peterbauer A, Wolbank S, Danzer M, Lindahl A, Gatenholm P, Redl H, van Griensven M. Human adipose-derived stem cells contribute to chondrogenesis in coculture with human articular chondrocytes. Tissue Eng Part A. 2009;15(12):3961–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Kazama T, Fujie M, Endo T, Kano K. Mature adipocyte-derived dedifferentiated fat cells can transdifferentiate into skeletal myocytes in vitro. Biochem Biophys Res Commun. 2008;377(3):780–5.CrossRefPubMedGoogle Scholar
  24. 24.
    Jumabay M, Matsumoto T, Yokoyama S, Kano K, Kusumi Y, Masuko T, Mitsumata M, Saito S, Hirayama A, Mugishima H, Fukuda N. Dedifferentiated fat cells convert to cardiomyocyte phenotype and repair infarcted cardiac tissue in rats. J Mol Cell Cardiol. 2009;47(5):565–75.CrossRefPubMedGoogle Scholar
  25. 25.
    Jumabay M, Zhang R, Yao Y, Goldhaber JI, Bostrom KI. Spontaneously beating cardiomyocytes derived from white mature adipocytes. Cardiovasc Res. 2010;85(1):17–27.CrossRefPubMedGoogle Scholar
  26. 26.
    Sakuma T, Matsumoto T, Kano K, Fukuda N, Obinata D, Yamaguchi K, Yoshida T, Takahashi S, Mugishima H. Mature, adipocyte derived, dedifferentiated fat cells can differentiate into smooth muscle-like cells and contribute to bladder tissue regeneration. J Urol. 2009;182(1):355–65.CrossRefPubMedGoogle Scholar
  27. 27.
    Poloni A, Maurizi G, Anastasi S, Mondini E, Mattiucci D, Discepoli G, Tiberi F, Mancini S, Partelli S, Maurizi A, Cinti S, Olivieri A, Leoni P. Plasticity of human dedifferentiated adipocytes toward endothelial cells. Exp Hematol. 2015;43(2):137–46.CrossRefPubMedGoogle Scholar
  28. 28.
    Jumabay M, Abdmaulen R, Urs S, Heydarkhan-Hagvall S, Chazenbalk GD, Jordan MC, Roos KP, Yao Y, Bostrom KI. Endothelial differentiation in multipotent cells derived from mouse and human white mature adipocytes. J Mol Cell Cardiol. 2012;53(6):790–800.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Shimizu Y, Sato S. In vitro study on regeneration of periodontal tissue microvasculature using human dedifferentiated fat cells. J Periodontol. 2015;86(1):129–36.CrossRefPubMedGoogle Scholar
  30. 30.
    Song N, Kou L, Lu XW, Sugawara A, Shimizu Y, Wu MK, Du L, Wang H, Sato S, Shen JF. The perivascular phenotype and behaviors of dedifferentiated cells derived from human mature adipocytes. Biochem Biophys Res Commun. 2015;457(3):479–84.CrossRefPubMedGoogle Scholar
  31. 31.
    Poloni A, Maurizi G, Foia F, Mondini E, Mattiucci D, Ambrogini P, Lattanzi D, Mancini S, Falconi M, Cinti S, Olivieri A, Leoni P. Glial-like differentiation potential of human mature adipocytes. J Mol Neurosci. 2015;55(1):91–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Oki Y, Watanabe S, Endo T, Kano K. Mature adipocyte-derived dedifferentiated fat cells can trans-differentiate into osteoblasts in vitro and in vivo only by all-trans retinoic acid. Cell Struct Funct. 2008;33(2):211–22.CrossRefPubMedGoogle Scholar
  33. 33.
    Kikuta S, Tanaka N, Kazama T, Kazama M, Kano K, Ryu J, Tokuhashi Y, Matsumoto T. Osteogenic effects of dedifferentiated fat cell transplantation in rabbit models of bone defect and ovariectomy-induced osteoporosis. Tissue Eng Part A. 2013;19(15–16):1792–802.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kishimoto N, Momota Y, Hashimoto Y, Ando K, Omasa T, Kotani J. Dedifferentiated fat cells differentiate into osteoblasts in titanium fiber mesh. Cytotechnology. 2013;65(1):15–22.CrossRefPubMedGoogle Scholar
  35. 35.
    Shirakata Y, Nakamura T, Shinohara Y, Taniyama K, Sakoda K, Yoshimoto T, Noguchi K. An exploratory study on the efficacy of rat dedifferentiated fat cells (rDFATs) with a poly lactic-co-glycolic acid/hydroxylapatite (PLGA/HA) composite for bone formation in a rat calvarial defect model. J Mater Sci Mater Med. 2014;25(3):899–908.CrossRefPubMedGoogle Scholar
  36. 36.
    Sugawara A, Sato S. Application of dedifferentiated fat cells for periodontal tissue regeneration. Hum Cell. 2014;27(1):12–21.CrossRefPubMedGoogle Scholar
  37. 37.
    Obinata D, Matsumoto T, Ikado Y, Sakuma T, Kano K, Fukuda N, Yamaguchi K, Mugishima H, Takahashi S. Transplantation of mature adipocyte-derived dedifferentiated fat (DFAT) cells improves urethral sphincter contractility in a rat model. Int J Urol. 2011;18(12):827–34.CrossRefPubMedGoogle Scholar
  38. 38.
    Soejima K, Kashimura T, Asami T, Kazama T, Matsumoto T, Nakazawa H. Effects of mature adipocyte-derived dedifferentiated fat (DFAT) cells on generation and vascularisation of dermis-like tissue after artificial dermis grafting. J Plast Surg Hand Surg. 2015;49(1):25–31.CrossRefPubMedGoogle Scholar
  39. 39.
    Matsumine H, Takeuchi Y, Sasaki R, Kazama T, Kano K, Matsumoto T, Sakurai H, Miyata M, Yamato M. Adipocyte-derived and dedifferentiated fat cells promoting facial nerve regeneration in a rat model. Plast Reconstr Surg. 2014;134(4):686–97.CrossRefPubMedGoogle Scholar
  40. 40.
    Yamada H, Ito D, Oki Y, Kitagawa M, Matsumoto T, Watari T, Kano K. Transplantation of mature adipocyte-derived dedifferentiated fat cells promotes locomotor functional recovery by remyelination and glial scar reduction after spinal cord injury in mice. Biochem Biophys Res Commun. 2014;454(2):341–6.CrossRefPubMedGoogle Scholar
  41. 41.
    Fernyhough ME, Vierck JL, Hausman GJ, Mir PS, Okine EK, Dodson MV. Primary adipocyte culture: adipocyte purification methods may lead to a new understanding of adipose tissue growth and development. Cytotechnology. 2004;46(2–3):163–72.CrossRefPubMedGoogle Scholar
  42. 42.
    Ono H, Oki Y, Bono H, Kano K. Gene expression profiling in multipotent DFAT cells derived from mature adipocytes. Biochem Biophys Res Commun. 2011;407(3):562–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Kou L, Lu XW, Wu MK, Wang H, Zhang YJ, Sato S, Shen JF. The phenotype and tissue-specific nature of multipotent cells derived from human mature adipocytes. Biochem Biophys Res Commun. 2014;444(4):543–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Gao Q, Zhao L, Song Z, Yang G. Expression pattern of embryonic stem cell markers in DFAT cells and ADSCs. Mol Biol Rep. 2012;39(5):5791–804.CrossRefPubMedGoogle Scholar
  45. 45.
    Festy F, Hoareau L, Bes-Houtmann S, Pequin AM, Gonthier MP, Munstun A, Hoarau JJ, Cesari M, Roche R. Surface protein expression between human adipose tissue-derived stromal cells and mature adipocytes. Histochem Cell Biol. 2005;124(2):113–21.CrossRefPubMedGoogle Scholar
  46. 46.
    Zhu JG, Xia L, Ji CB, Zhang CM, Zhu GZ, Shi CM, Chen L, Qin DN, Guo XR. Differential DNA methylation status between human preadipocytes and mature adipocytes. Cell Biochem Biophys. 2012;63(1):1–15.CrossRefPubMedGoogle Scholar
  47. 47.
    Gustafson B, Smith U. Activation of canonical wingless-type MMTV integration site family (Wnt) signaling in mature adipocytes increases beta-catenin levels and leads to cell dedifferentiation and insulin resistance. J Biol Chem. 2010;285(18):14031–41.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Krishnan V, Bryant HU, Macdougald OA. Regulation of bone mass by Wnt signaling. J Clin Invest. 2006;116(5):1202–9.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Liu J, Wang H, Zuo Y, Farmer SR. Functional interaction between peroxisome proliferator-activated receptor gamma and beta-catenin. Mol Cell Biol. 2006;26(15):5827–37.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Song HY, Kim MR, Lee MJ, Jeon ES, Bae YC, Jung JS, Kim JH. Oncostatin M decreases adiponectin expression and induces dedifferentiation of adipocytes by JAK3- and MEK-dependent pathways. Int J Biochem Cell Biol. 2007;39(2):439–49.CrossRefPubMedGoogle Scholar
  51. 51.
    Tanaka M, Miyajima A, Oncostatin M. A multifunctional cytokine. Rev Physiol Biochem Pharmacol. 2003;149:39–52.CrossRefPubMedGoogle Scholar
  52. 52.
    Kubin T, Poling J, Kostin S, Gajawada P, Hein S, Rees W, Wietelmann A, Tanaka M, Lorchner H, Schimanski S, Szibor M, Warnecke H, Braun T. Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell. 2011;9(5):420–32.CrossRefPubMedGoogle Scholar
  53. 53.
    Yagi K, Kondo D, Okazaki Y, Kano K. A novel preadipocyte cell line established from mouse adult mature adipocytes. Biochem Biophys Res Commun. 2004;321(4):967–74.CrossRefPubMedGoogle Scholar
  54. 54.
    Nakamura T, Shinohara Y, Momozaki S, Yoshimoto T, Noguchi K. Co-stimulation with bone morphogenetic protein-9 and FK506 induces remarkable osteoblastic differentiation in rat dedifferentiated fat cells. Biochem Biophys Res Commun. 2013;440(2):289–94.CrossRefPubMedGoogle Scholar
  55. 55.
    Brunk BP, Goldhamer DJ, Emerson CP Jr. Regulated demethylation of the myoD distal enhancer during skeletal myogenesis. Dev Biol. 1996;177(2):490–503.CrossRefPubMedGoogle Scholar
  56. 56.
    Wakitani S, Saito T, Caplan AI. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve. 1995;18(12):1417–26.CrossRefPubMedGoogle Scholar
  57. 57.
    Yuasa S, Itabashi Y, Koshimizu U, Tanaka T, Sugimura K, Kinoshita M, Hattori F, Fukami S, Shimazaki T, Ogawa S, Okano H, Fukuda K. Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nat Biotechnol. 2005;23(5):607–11.CrossRefPubMedGoogle Scholar
  58. 58.
    Naito AT, Shiojima I, Akazawa H, Hidaka K, Morisaki T, Kikuchi A, Komuro I. Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis. Proc Natl Acad Sci U S A. 2006;103(52):19812–7.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Penicaud L, Casteilla L. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation. 2004;109(5):656–63.CrossRefPubMedGoogle Scholar
  60. 60.
    Yao Y, Jumabay M, Wang A, Bostrom KI. Matrix Gla protein deficiency causes arteriovenous malformations in mice. J Clin Invest. 2011;121(8):2993–3004.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology. 2005;7(4):452–64.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Franco M, Roswall P, Cortez E, Hanahan D, Pietras K. Pericytes promote endothelial cell survival through induction of autocrine VEGF-A signaling and Bcl-w expression. Blood. 2011;118(10):2906–17.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.CrossRefPubMedGoogle Scholar
  64. 64.
    Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25(11):2739–49.CrossRefPubMedGoogle Scholar
  65. 65.
    Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells. 2005;23(3):412–23.CrossRefPubMedGoogle Scholar
  66. 66.
    Rigotti G, Marchi A, Sbarbati A. Adipose-derived mesenchymal stem cells: past, present, and future. Aesthet Plast Surg. 2009;33(3):271–3.CrossRefGoogle Scholar
  67. 67.
    Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, Di Halvorsen Y, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells. 2006;24(2):376–85.CrossRefPubMedGoogle Scholar
  68. 68.
    Crago AM, Singer S. Clinical and molecular approaches to well differentiated and dedifferentiated liposarcoma. Curr Opin Oncol. 2011;23(4):373–8.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Xiaobing Fu
    • 1
  • Andong Zhao
    • 2
  • Tian Hu
    • 3
  1. 1.Key Laboratory of Wound Repair and Regeneration of PLAThe First Hospital Affiliated to the PLA General HospitalBeijingChina
  2. 2.Tianjin Medical UniversityTianjinChina
  3. 3.School of MedicineNankai UniversityTianjinChina

Personalised recommendations