Dedifferentiation and Skin Regeneration

  • Xiaobing Fu
  • Andong Zhao
  • Tian Hu


Skin homeostasis maintenance, skin repair, and regeneration are the hot topics in multiple disciplines, ranging from dermatology, plastic surgery, trauma, and cutaneous wound healing. Epidermal stem cells are thought to be the primary cell reservoir for skin repair and restoration. And it is generally known that skin cell would renew itself every 2–4 weeks. However, owing to the difficulty in isolation, sampling, and limited quantities of epidermal stem cells, epidermal cell dedifferentiation renders novel opportunities for clinical practice of skin repair and regeneration. In patients with profound burns, the wound can get into the muscle tissues and impair sweat glands. Keratinocyte regeneration without skin appendage restoring would deteriorate patients’ prognosis, as sweat glands play significant parts in body temperature regulation and homeostasis maintenance. The likelihood may be offered by mesenchymal stem cells’ plasticity to regenerate sweat glands after severe burn. In particular, recent researches have altered the possibility to reality. This review collected research milestones in this field, and some fundamental achievements were completed by many contributors of this book. For some heritage dermatological disorders, researches have reported that patient-specific iPSCs from keratinocytes could achieve good clinical outcomes. Besides, melanocyte development, pigmentation, and dedifferentiation are also illustrated in this review, which has opened a new avenue for obtaining precursor cells.


Skin regeneration Epidermal keratinocyte dedifferentiation Melanocyte dedifferentiation Keratinocyte reprogramming Wound healing 


  1. 1.
    Fu X, Sun X, Li X, Sheng Z. Dedifferentiation of epidermal cells to stem cells in vivo. Lancet. 2001;358(9287):1067–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Sun X, Fu X, Han W, Zhao Y, Liu H, Sheng Z. Dedifferentiation of human terminally differentiating keratinocytes into their precursor cells induced by basic fibroblast growth factor. Biol Pharm Bull. 2011;34(7):1037–45.CrossRefPubMedGoogle Scholar
  3. 3.
    Yang Y, Xia T, Chen F, Wei W, Liu C, He S, Li X. Electrospun fibers with plasmid bFGF polyplex loadings promote skin wound healing in diabetic rats. Mol Pharm. 2012;9(1):48–58.CrossRefPubMedGoogle Scholar
  4. 4.
    Cai S, Pan Y, Fu XB, Lei YH, Sun TZ, Wang J, Sheng ZY. Dedifferentiation of human epidermal keratinocytes induced by UV in vitro. J Health Sci. 2009;55(5):709–19.CrossRefGoogle Scholar
  5. 5.
    Li H, Fu X, Zhang L, Sun T, Wang J. In vivo dedifferentiation of human epidermal cells. Cell Biol Int. 2007;31(11):1436–41.CrossRefPubMedGoogle Scholar
  6. 6.
    Mannik J, Alzayady K, Ghazizadeh S. Regeneration of multilineage skin epithelia by differentiated keratinocytes. J Invest Dermatol. 2010;130(2):388–97.CrossRefPubMedGoogle Scholar
  7. 7.
    Zhang C, Fu X, Chen P, Bao X, Li F, Sun X, Lei Y, Cai S, Sun T, Sheng Z. Dedifferentiation derived cells exhibit phenotypic and functional characteristics of epidermal stem cells. J Cell Mol Med. 2010;14(5):1135–45.PubMedGoogle Scholar
  8. 8.
    Zhang C, Chen P, Fei Y, Liu B, Ma K, Fu X, Zhao Z, Sun T, Sheng Z. Wnt/beta-catenin signaling is critical for dedifferentiation of aged epidermal cells in vivo and in vitro. Aging Cell. 2012;11(1):14–23.CrossRefPubMedGoogle Scholar
  9. 9.
    Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434(7035):843–50.CrossRefPubMedGoogle Scholar
  10. 10.
    Choi YS, Zhang Y, Xu M, Yang Y, Ito M, Peng T, Cui Z, Nagy A, Hadjantonakis AK, Lang RA, Cotsarelis G, Andl T, Morrisey EE, Millar SE. Distinct functions for Wnt/beta-catenin in hair follicle stem cell proliferation and survival and interfollicular epidermal homeostasis. Cell Stem Cell. 2013;13(6):720–33.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fathke C, Wilson L, Shah K, Kim B, Hocking A, Moon R, Isik F. Wnt signaling induces epithelial differentiation during cutaneous wound healing. BMC Cell Biol. 2006;7:4.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Dumesic PA, Scholl FA, Barragan DI, Khavari PA. Erk1/2 MAP kinases are required for epidermal G2/M progression. J Cell Biol. 2009;185(3):409–22.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yamamoto H, Ochiya T, Takeshita F, Toriyama-Baba H, Hirai K, Sasaki H, Sasaki H, Sakamoto H, Yoshida T, Saito I, Terada M. Enhanced skin carcinogenesis in cyclin D1-conditional transgenic mice: cyclin D1 alters keratinocyte response to calcium-induced terminal differentiation. Cancer Res. 2002;62(6):1641–7.PubMedGoogle Scholar
  14. 14.
    Li JF, Duan HF, Wu CT, Zhang DJ, Deng Y, Yin HL, Han B, Gong HC, Wang HW, Wang YL. HGF accelerates wound healing by promoting the dedifferentiation of epidermal cells through beta1-integrin/ILK pathway. Biomed Res Int. 2013;2013:470418.PubMedGoogle Scholar
  15. 15.
    Hannigan GE, Leung-Hagesteijn C, Fitz-Gibbon L, Coppolino MG, Radeva G, Filmus J, Bell JC, Dedhar S. Regulation of cell adhesion and anchorage-dependent growth by a new beta 1-integrin-linked protein kinase. Nature. 1996;379(6560):91–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Jones PH, Harper S, Watt FM. Stem cell patterning and fate in human epidermis. Cell. 1995;80(1):83–93.CrossRefPubMedGoogle Scholar
  17. 17.
    Serrano I, Diez-Marques ML, Rodriguez-Puyol M, Herrero-Fresneda I, Raimundo Garcia dM, Dedhar S, Ruiz-Torres MP, Rodriguez-Puyol D. Integrin-linked kinase (ILK) modulates wound healing through regulation of hepatocyte growth factor (HGF). Exp Cell Res. 2012;318(19):2470–81.CrossRefPubMedGoogle Scholar
  18. 18.
    Xie W, Li F, Kudlow JE, Wu C. Expression of the integrin-linked kinase (ILK) in mouse skin: loss of expression in suprabasal layers of the epidermis and up-regulation by erbB-2. Am J Pathol. 1998;153(2):367–72.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Harrisingh MC, Perez-Nadales E, Parkinson DB, Malcolm DS, Mudge AW, Lloyd AC. The Ras/Raf/ERK signalling pathway drives Schwann cell dedifferentiation. EMBO J. 2004;23(15):3061–71.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yoon YM, Kim SJ, Oh CD, Ju JW, Song WK, Yoo YJ, Huh TL, Chun JS. Maintenance of differentiated phenotype of articular chondrocytes by protein kinase C and extracellular signal-regulated protein kinase. J Biol Chem. 2002;277(10):8412–20.CrossRefPubMedGoogle Scholar
  21. 21.
    Vogel S, Kubin T, von der Ahe D, Deindl E, Schaper W, Zimmermann R. MEK hyperphosphorylation coincides with cell cycle shut down of cultured smooth muscle cells. J Cell Physiol. 2006;206(1):25–34.CrossRefPubMedGoogle Scholar
  22. 22.
    Grinnell KL, Yang B, Eckert RL, Bickenbach JR. De-differentiation of mouse interfollicular keratinocytes by the embryonic transcription factor Oct-4. J Invest Dermatol. 2007;127(2):372–80.CrossRefPubMedGoogle Scholar
  23. 23.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.CrossRefPubMedGoogle Scholar
  24. 24.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.CrossRefPubMedGoogle Scholar
  25. 25.
    Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, Vassena R, Bilic J, Pekarik V, Tiscornia G, Edel M, Boue S, Izpisua Belmonte JC. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol. 2008;26(11):1276–84.CrossRefPubMedGoogle Scholar
  26. 26.
    Maherali N, Ahfeldt T, Rigamonti A, Utikal J, Cowan C, Hochedlinger K. A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell. 2008;3(3):340–5.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Novak A, Shtrichman R, Germanguz I, Segev H, Zeevi-Levin N, Fishman B, Mandel YE, Barad L, Domev H, Kotton D, Mostoslavsky G, Binah O, Itskovitz-Eldor J. Enhanced reprogramming and cardiac differentiation of human keratinocytes derived from plucked hair follicles, using a single excisable lentivirus. Cell Reprogram. 2010;12(6):665–78.CrossRefPubMedGoogle Scholar
  28. 28.
    Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Arauzo-Bravo MJ, Ruau D, Han DW, Zenke M, Scholer HR. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature. 2008;454(7204):646–50.CrossRefPubMedGoogle Scholar
  29. 29.
    Eminli S, Utikal J, Arnold K, Jaenisch R, Hochedlinger K. Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression. Stem Cells. 2008;26(10):2467–74.CrossRefPubMedGoogle Scholar
  30. 30.
    Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, Chiba T, Yamanaka S. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science. 2008;321(5889):699–702.CrossRefPubMedGoogle Scholar
  31. 31.
    Ohmine S, Squillace KA, Hartjes KA, Deeds MC, Armstrong AS, Thatava T, Sakuma T, Terzic A, Kudva Y, Ikeda Y. Reprogrammed keratinocytes from elderly type 2 diabetes patients suppress senescence genes to acquire induced pluripotency. Aging (Albany NY). 2012;4(1):60–73.CrossRefGoogle Scholar
  32. 32.
    Almaani N, Nagy N, Liu L, Dopping-Hepenstal PJ, Lai-Cheong JE, Clements SE, Techanukul T, Tanaka A, Mellerio JE, McGrath JA. Revertant mosaicism in recessive dystrophic epidermolysis bullosa. J Invest Dermatol. 2010;130(7):1937–40.CrossRefPubMedGoogle Scholar
  33. 33.
    Tolar J, McGrath JA, Xia L, Riddle MJ, Lees CJ, Eide C, Keene DR, Liu L, Osborn MJ, Lund TC, Blazar BR, Wagner JE. Patient-specific naturally gene-reverted induced pluripotent stem cells in recessive dystrophic epidermolysis bullosa. J Invest Dermatol. 2014;134(5):1246–54.CrossRefPubMedGoogle Scholar
  34. 34.
    Umegaki-Arao N, Pasmooij AM, Itoh M, Cerise JE, Guo Z, Levy B, Gostynski A, Rothman LR, Jonkman MF, Christiano AM. Induced pluripotent stem cells from human revertant keratinocytes for the treatment of epidermolysis bullosa. Sci Transl Med. 2014;6(264):264ra164.CrossRefPubMedGoogle Scholar
  35. 35.
    Zhao Z, Jin C, Ding K, Ge X, Dai L. Dedifferentiation of human epidermal melanocytes into melanoblasts in vitro. Exp Dermatol. 2012;21(7):504–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Dupin E, Glavieux C, Vaigot P, Le Douarin NM. Endothelin 3 induces the reversion of melanocytes to glia through a neural crest-derived glial-melanocytic progenitor. Proc Natl Acad Sci U S A. 2000;97(14):7882–7.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Dupin E, Real C, Glavieux-Pardanaud C, Vaigot P, Le Douarin NM. Reversal of developmental restrictions in neural crest lineages: transition from Schwann cells to glial-melanocytic precursors in vitro. Proc Natl Acad Sci U S A. 2003;100(9):5229–33.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Real C, Glavieux-Pardanaud C, Le Douarin NM, Dupin E. Clonally cultured differentiated pigment cells can dedifferentiate and generate multipotent progenitors with self-renewing potential. Dev Biol. 2006;300(2):656–69.CrossRefPubMedGoogle Scholar
  39. 39.
    Kormos B, Belso N, Bebes A, Szabad G, Bacsa S, Szell M, Kemeny L, Bata-Csorgo Z. In vitro dedifferentiation of melanocytes from adult epidermis. PLoS One. 2011;6(2):e17197.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Zabierowski SE, Baubet V, Himes B, Li L, Fukunaga-Kalabis M, Patel S, McDaid R, Guerra M, Gimotty P, Dahmane N, Herlyn M. Direct reprogramming of melanocytes to neural crest stem-like cells by one defined factor. Stem Cells. 2011;29(11):1752–62.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Utikal J, Maherali N, Kulalert W, Hochedlinger K. Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J Cell Sci. 2009;122(Pt 19):3502–10.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Xiaobing Fu
    • 1
  • Andong Zhao
    • 2
  • Tian Hu
    • 3
  1. 1.Key Laboratory of Wound Repair and Regeneration of PLAThe First Hospital Affiliated to the PLA General HospitalBeijingChina
  2. 2.Tianjin Medical UniversityTianjinChina
  3. 3.School of MedicineNankai UniversityTianjinChina

Personalised recommendations