Dedifferentiation and Musculoskeletal Repair and Regeneration

  • Xiaobing Fu
  • Andong Zhao
  • Tian Hu


The majority of musculoskeletal diseases do not cause high mortality rate in patients as cancer and cardiovascular disease do. Rather, degeneration and injury of articulate bone and skeletal muscle would pose a grave threat to the quality of life. Adult articular cartilage possesses an extremely low self-regeneration ability owing to its avascular nature. Articular cartilage surface’s regeneration is decisive to inhibit the progression to osteoarthritis. Besides, osteogenesis deprives from mesenchymal stem cells (MSCs) differentiating into mature osteoblasts and bone formation’s each period is inseparable from assorted biological molecules’ delicate regulation. Of note, understanding the sophisticated circuit between osteogenic homeostasis and underlying mechanism is of tremendous value for artificial skeletal regeneration for severe bone defects. Adult skeletal muscle regenerates upon practice, muscle trauma, or degeneration. Satellite cells are muscle-resident stem cells and play substantive functions in regeneration and muscle development. Muscle regeneration recapitulates muscle development’s process in a large number of facets. In certain muscle diseases, heterotopic ossification or ectopic calcification, as well as fibrosis and adipogenesis, takes place in skeletal muscle. The author focuses on the issue of chondrocyte dedifferentiation, autologous chondrocyte transplantation, bone regeneration, and osteoblast and myotube dedifferentiation and compares and illustrates the difference of regenerative capacity between zebrafish, amphibians, and mammals. Specifically, molecular mechanisms of chondrocyte dedifferentiation and myotube dedifferentiation in distinct conditions are described in detail.


Musculoskeletal system Articular cartilage repair Chondrocyte dedifferentiation Bone repair Skeletal muscle regeneration Myotube dedifferentiation 


  1. 1.
    Sandell LJ, Aigner T. Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res. 2001;3(2):107–13.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889–95.CrossRefPubMedGoogle Scholar
  3. 3.
    Layman DL, Sokoloff L, Miller EJ. Collagen synthesis by articular in monolayer culture. Exp Cell Res. 1972;73(1):107–12.CrossRefPubMedGoogle Scholar
  4. 4.
    Benya PD, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982;30(1):215–24.CrossRefPubMedGoogle Scholar
  5. 5.
    von der Mark K, Gauss V, von der Mark H, Muller P. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature. 1977;267(5611):531–2.CrossRefPubMedGoogle Scholar
  6. 6.
    Benya PD, Padilla SR, Nimni ME. Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell. 1978;15(4):1313–21.CrossRefPubMedGoogle Scholar
  7. 7.
    Minegishi Y, Hosokawa K, Tsumaki N. Time-lapse observation of the dedifferentiation process in mouse chondrocytes using chondrocyte-specific reporters. Osteoarthr Cartil. 2013;21(12):1968–75.CrossRefPubMedGoogle Scholar
  8. 8.
    Barbero A, Ploegert S, Heberer M, Martin I. Plasticity of clonal populations of dedifferentiated adult human articular chondrocytes. Arthritis Rheum. 2003;48(5):1315–25.CrossRefPubMedGoogle Scholar
  9. 9.
    de la Fuente R, Abad JL, Garcia-Castro J, Fernandez-Miguel G, Petriz J, Rubio D, Vicario-Abejon C, Guillen P, Gonzalez MA, Bernad A. Dedifferentiated adult articular chondrocytes: a population of human multipotent primitive cells. Exp Cell Res. 2004;297(2):313–28.CrossRefPubMedGoogle Scholar
  10. 10.
    Williams R, Khan IM, Richardson K, Nelson L, McCarthy HE, Analbelsi T, Singhrao SK, Dowthwaite GP, Jones RE, Baird DM, Lewis H, Roberts S, Shaw HM, Dudhia J, Fairclough J, Briggs T, Archer CW. Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PLoS One. 2010;5(10):e13246.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Benz K, Stippich C, Freudigmann C, Mollenhauer JA, Aicher WK. Maintenance of “stem cell” features of cartilage cell sub-populations during in vitro propagation. J Transl Med. 2013;11:27.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Martel-Pelletier J, Alaaeddine N, Pelletier JP. Cytokines and their role in the pathophysiology of osteoarthritis. Front Biosci. 1999;4:D694–703.CrossRefPubMedGoogle Scholar
  13. 13.
    Honorati MC, Cattini L, Facchini A. IL-17, IL-1 beta and TNF-alpha stimulate VEGF production by dedifferentiated chondrocytes. Osteoarthr Cartil. 2004;12(9):683–91.CrossRefPubMedGoogle Scholar
  14. 14.
    Hwang S, Yu S, Chun J. Regulatory mechanism of dedifferentiation of articular chondrocytes induced by IL-1beta via c-Jun/AP-1 signaling pathway. Mol Biol Cell. 2004;15:448a.Google Scholar
  15. 15.
    Hwang SG, Yu SS, Poo H, Chun JS. c-Jun/activator protein-1 mediates interleukin-1beta-induced dedifferentiation but not cyclooxygenase-2 expression in articular chondrocytes. J Biol Chem. 2005;280(33):29780–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Hong EH, Yun HS, Kim J, Um HD, Lee KH, Kang CM, Lee SJ, Chun JS, Hwang SG. Nicotinamide phosphoribosyltransferase is essential for interleukin-1beta-mediated dedifferentiation of articular chondrocytes via SIRT1 and extracellular signal-regulated kinase (ERK) complex signaling. J Biol Chem. 2011;286(32):28619–31.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hong EH, Song JY, Lee SJ, Park IC, Um HD, Park JK, Lee KH, Nam SY, Hwang SG. Low-dose gamma-radiation inhibits IL-1beta-induced dedifferentiation and inflammation of articular chondrocytes via blockage of catenin signaling. IUBMB Life. 2014;66(2):128–37.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Amin AR, Abramson SB. The role of nitric oxide in articular cartilage breakdown in osteoarthritis. Curr Opin Rheumatol. 1998;10(3):263–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Kim SJ, Hwang SG, Kim IC, Chun JS. Actin cytoskeletal architecture regulates nitric oxide-induced apoptosis, dedifferentiation, and cyclooxygenase-2 expression in articular chondrocytes via mitogen-activated protein kinase and protein kinase C pathways. J Biol Chem. 2003;278(43):42448–56.CrossRefPubMedGoogle Scholar
  20. 20.
    Kim SJ, Kim HG, Oh CD, Hwang SG, Song WK, Yoo YJ, Kang SS, Chun JS. p38 kinase-dependent and -independent inhibition of protein kinase C zeta and -alpha regulates nitric oxide-induced apoptosis and dedifferentiation of articular chondrocytes. J Biol Chem. 2002;277(33):30375–81.CrossRefPubMedGoogle Scholar
  21. 21.
    Kim SJ, Ju JW, Oh CD, Yoon YM, Song WK, Kim JH, Yoo YJ, Bang OS, Kang SS, Chun JS. ERK-1/2 and p38 kinase oppositely regulate nitric oxide-induced apoptosis of chondrocytes in association with p53, caspase-3, and differentiation status. J Biol Chem. 2002;277(2):1332–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Yoon YM, Kim SJ, Oh CD, Ju JW, Song WK, Yoo YJ, Huh TL, Chun JS. Maintenance of differentiated phenotype of articular chondrocytes by protein kinase C and extracellular signal-regulated protein kinase. J Biol Chem. 2002;277(10):8412–20.CrossRefPubMedGoogle Scholar
  23. 23.
    Yagi R, McBurney D, Horton WE Jr. Bcl-2 positively regulates Sox9-dependent chondrocyte gene expression by suppressing the MEK-ERK1/2 signaling pathway. J Biol Chem. 2005;280(34):30517–25.CrossRefPubMedGoogle Scholar
  24. 24.
    Fukui N, Ikeda Y, Tanaka N, Wake M, Yamaguchi T, Mitomi H, Ishida S, Furukawa H, Hamada Y, Miyamoto Y, Sawabe M, Tashiro T, Katsuragawa Y, Tohma S. alphavbeta5 integrin promotes dedifferentiation of monolayer-cultured articular chondrocytes. Arthritis Rheum. 2011;63(7):1938–49.CrossRefPubMedGoogle Scholar
  25. 25.
    Rosenzweig DH, Ou SJ, Quinn TM. P38 mitogen-activated protein kinase promotes dedifferentiation of primary articular chondrocytes in monolayer culture. J Cell Mol Med. 2013;17(4):508–17.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Watanabe N, Tezuka Y, Matsuno K, Miyatani S, Morimura N, Yasuda M, Fujimaki R, Kuroda K, Hiraki Y, Hozumi N, Tezuka K. Suppression of differentiation and proliferation of early chondrogenic cells by notch. J Bone Miner Metab. 2003;21(6):344–52.CrossRefPubMedGoogle Scholar
  27. 27.
    Blaise R, Mahjoub M, Salvat C, Barbe U, Brou C, Corvol MT, Savouret JF, Rannou F, Berenbaum F, Bausero P. Involvement of the notch pathway in the regulation of matrix metalloproteinase 13 and the dedifferentiation of articular chondrocytes in murine cartilage. Arthritis Rheum. 2009;60(2):428–39.CrossRefPubMedGoogle Scholar
  28. 28.
    Francis-West PH, Abdelfattah A, Chen P, Allen C, Parish J, Ladher R, Allen S, MacPherson S, Luyten FP, Archer CW. Mechanisms of GDF-5 action during skeletal development. Development. 1999;126(6):1305–15.PubMedGoogle Scholar
  29. 29.
    Schlegel W, Albrecht C, Eckl P, Freudenthaler H, Berger A, Vecsei V, Marlovits S. Dedifferentiation of human articular chondrocytes is associated with alterations in expression patterns of GDF-5 and its receptors. J Cell Mol Med. 2009;13(9B):3398–404.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Karlsen TA, Shahdadfar A, Brinchmann JE. Human primary articular chondrocytes, chondroblasts-like cells, and dedifferentiated chondrocytes: differences in gene, microRNA, and protein expression and phenotype. Tissue Eng Part C Methods. 2011;17(2):219–27.CrossRefPubMedGoogle Scholar
  31. 31.
    Lin L, Shen Q, Zhang C, Chen L, Yu C. Assessment of the profiling microRNA expression of differentiated and dedifferentiated human adult articular chondrocytes. J Orthop Res. 2011;29(10):1578–84.CrossRefPubMedGoogle Scholar
  32. 32.
    Hong E, Reddi AH. Dedifferentiation and redifferentiation of articular chondrocytes from surface and middle zones: changes in microRNAs-221/-222, -140, and -143/145 expression. Tissue Eng Part A. 2013;19(7–8):1015–22.CrossRefPubMedGoogle Scholar
  33. 33.
    Sailor LZ, Hewick RM, Morris EA. Recombinant human bone morphogenetic protein-2 maintains the articular chondrocyte phenotype in long-term culture. J Orthop Res. 1996;14(6):937–45.CrossRefPubMedGoogle Scholar
  34. 34.
    Park H, Temenoff JS, Holland TA, Tabata Y, Mikos AG. Delivery of TGF-beta1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials. 2005;26(34):7095–103.CrossRefPubMedGoogle Scholar
  35. 35.
    Munirah S, Samsudin OC, Aminuddin BS, Ruszymah BH. Expansion of human articular chondrocytes and formation of tissue-engineered cartilage: a step towards exploring a potential use of matrix-induced cell therapy. Tissue Cell. 2010;42(5):282–92.CrossRefPubMedGoogle Scholar
  36. 36.
    Nadzir MM, Kino-oka M, Sugawara K, Taya M. Modulation of chondrocyte migration and aggregation by insulin-like growth factor-1 in cultured cartilage. Biotechnol Lett. 2013;35(2):295–300.CrossRefPubMedGoogle Scholar
  37. 37.
    Matsumoto E, Furumatsu T, Kanazawa T, Tamura M, Ozaki T. ROCK inhibitor prevents the dedifferentiation of human articular chondrocytes. Biochem Biophys Res Commun. 2012;420(1):124–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Zhao J, Fan X, Zhang Q, Sun F, Li X, Xiong C, Zhang C, Fan H. Chitosan-plasmid DNA nanoparticles encoding small hairpin RNA targeting MMP-3 and -13 to inhibit the expression of dedifferentiation related genes in expanded chondrocytes. J Biomed Mater Res A. 2014;102(2):373–80.CrossRefPubMedGoogle Scholar
  39. 39.
    Lin L, Shen Q, Xue T, Duan X, Fu X, Yu C. Sonic hedgehog improves redifferentiation of dedifferentiated chondrocytes for articular cartilage repair. PLoS One. 2014;9(2):e88550.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rosenzweig DH, Solar-Cafaggi S, Quinn TM. Functionalization of dynamic culture surfaces with a cartilage extracellular matrix extract enhances chondrocyte phenotype against dedifferentiation. Acta Biomater. 2012;8(9):3333–41.CrossRefPubMedGoogle Scholar
  41. 41.
    Villanueva I, Weigel CA, Bryant SJ. Cell-matrix interactions and dynamic mechanical loading influence chondrocyte gene expression and bioactivity in PEG-RGD hydrogels. Acta Biomater. 2009;5(8):2832–46.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Dahlin RL, Meretoja VV, Ni M, Kasper FK, Mikos AG. Design of a high-throughput flow perfusion bioreactor system for tissue engineering. Tissue Eng Part C Methods. 2012;18(10):817–20.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Wang Y, Blasioli DJ, Kim HJ, Kim HS, Kaplan DL. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials. 2006;27(25):4434–42.CrossRefPubMedGoogle Scholar
  44. 44.
    Kim M, Kim SE, Kang SS, Kim YH, Tae G. The use of de-differentiated chondrocytes delivered by a heparin-based hydrogel to regenerate cartilage in partial-thickness defects. Biomaterials. 2011;32(31):7883–96.CrossRefPubMedGoogle Scholar
  45. 45.
    Caron MM, Emans PJ, Coolsen MM, Voss L, Surtel DA, Cremers A, van Rhijn LW, Welting TJ. Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures. Osteoarthr Cartil. 2012;20(10):1170–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Domm C, Schunke M, Christesen K, Kurz B. Redifferentiation of dedifferentiated bovine articular chondrocytes in alginate culture under low oxygen tension. Osteoarthr Cartil. 2002;10(1):13–22.CrossRefPubMedGoogle Scholar
  47. 47.
    Domm C, Schunke M, Steinhagen J, Freitag S, Kurz B. Influence of various alginate brands on the redifferentiation of dedifferentiated bovine articular chondrocytes in alginate bead culture under high and low oxygen tension. Tissue Eng. 2004;10(11–12):1796–805.CrossRefPubMedGoogle Scholar
  48. 48.
    Malda J, van Blitterswijk CA, van Geffen M, Martens DE, Tramper J, Riesle J. Low oxygen tension stimulates the redifferentiation of dedifferentiated adult human nasal chondrocytes. Osteoarthr Cartil. 2004;12(4):306–13.CrossRefPubMedGoogle Scholar
  49. 49.
    Schulze-Tanzil G, de Souza P, Villegas Castrejon H, John T, Merker HJ, Scheid A, Shakibaei M. Redifferentiation of dedifferentiated human chondrocytes in high-density cultures. Cell Tissue Res. 2002;308(3):371–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Chen G, Sato T, Ushida T, Hirochika R, Tateishi T. Redifferentiation of dedifferentiated bovine chondrocytes when cultured in vitro in a PLGA-collagen hybrid mesh. FEBS Lett. 2003;542(1–3):95–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Cao B, Peng R, Li Z, Ding J. Effects of spreading areas and aspect ratios of single cells on dedifferentiation of chondrocytes. Biomaterials. 2014;35(25):6871–81.CrossRefPubMedGoogle Scholar
  52. 52.
    Knopf F, Hammond C, Chekuru A, Kurth T, Hans S, Weber CW, Mahatma G, Fisher S, Brand M, Schulte-Merker S, Weidinger G. Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin. Dev Cell. 2011;20(5):713–24.CrossRefPubMedGoogle Scholar
  53. 53.
    Sousa S, Afonso N, Bensimon-Brito A, Fonseca M, Simoes M, Leon J, Roehl H, Cancela ML, Jacinto A. Differentiated skeletal cells contribute to blastema formation during zebrafish fin regeneration. Development. 2011;138(18):3897–905.CrossRefPubMedGoogle Scholar
  54. 54.
    Tu S, Johnson SL. Fate restriction in the growing and regenerating zebrafish fin. Dev Cell. 2011;20(5):725–32.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Geurtzen K, Knopf F, Wehner D, Huitema LF, Schulte-Merker S, Weidinger G. Mature osteoblasts dedifferentiate in response to traumatic bone injury in the zebrafish fin and skull. Development. 2014;141(11):2225–34.CrossRefPubMedGoogle Scholar
  56. 56.
    Singh SP, Holdway JE, Poss KD. Regeneration of amputated zebrafish fin rays from de novo osteoblasts. Dev Cell. 2012;22(4):879–86.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Park D, Spencer JA, Koh BI, Kobayashi T, Fujisaki J, Clemens TL, Lin CP, Kronenberg HM, Scadden DT. Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell. 2012;10(3):259–72.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Torreggiani E, Matthews BG, Pejda S, Matic I, Horowitz MC, Grcevic D, Kalajzic I. Preosteocytes/osteocytes have the potential to dedifferentiate becoming a source of osteoblasts. PLoS One. 2013;8(9):e75204.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Brockes JP, Kumar A. Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nat Rev Mol Cell Biol. 2002;3(8):566–74.CrossRefPubMedGoogle Scholar
  60. 60.
    Lo DC, Allen F, Brockes JP. Reversal of muscle differentiation during urodele limb regeneration. Proc Natl Acad Sci U S A. 1993;90(15):7230–4.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Kumar A, Velloso CP, Imokawa Y, Brockes JP. Plasticity of retrovirus-labelled myotubes in the newt limb regeneration blastema. Dev Biol. 2000;218(2):125–36.CrossRefPubMedGoogle Scholar
  62. 62.
    Echeverri K, Clarke JD, Tanaka EM. In vivo imaging indicates muscle fiber dedifferentiation is a major contributor to the regenerating tail blastema. Dev Biol. 2001;236(1):151–64.CrossRefPubMedGoogle Scholar
  63. 63.
    Odelberg SJ, Kollhoff A, Keating MT. Dedifferentiation of mammalian myotubes induced by msx1. Cell. 2000;103(7):1099–109.CrossRefPubMedGoogle Scholar
  64. 64.
    Song K, Wang Y, Sassoon D. Expression of Hox-7.1 in myoblasts inhibits terminal differentiation and induces cell transformation. Nature. 1992;360(6403):477–81.CrossRefPubMedGoogle Scholar
  65. 65.
    McGann CJ, Odelberg SJ, Keating MT. Mammalian myotube dedifferentiation induced by newt regeneration extract. Proc Natl Acad Sci U S A. 2001;98(24):13699–704.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Velloso CP, Simon A, Brockes JP. Mammalian postmitotic nuclei reenter the cell cycle after serum stimulation in newt/mouse hybrid myotubes. Curr Biol. 2001;11(11):855–8.CrossRefPubMedGoogle Scholar
  67. 67.
    Loof S, Straube WL, Drechsel D, Tanaka EM, Simon A. Plasticity of mammalian myotubes upon stimulation with a thrombin-activated serum factor. Cell Cycle. 2007;6(9):1096–101.CrossRefPubMedGoogle Scholar
  68. 68.
    Yang Z, Liu Q, Mannix RJ, Xu X, Li H, Ma Z, Ingber DE, Allen PD, Wang Y. Mononuclear cells from dedifferentiation of mouse myotubes display remarkable regenerative capability. Stem Cells. 2014;32(9):2492–501.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Hjiantoniou E, Anayasa M, Nicolaou P, Bantounas I, Saito M, Iseki S, Uney JB, Phylactou LA. Twist induces reversal of myotube formation. Differentiation. 2008;76(2):182–92.CrossRefPubMedGoogle Scholar
  70. 70.
    Hebrok M, Wertz K, Fuchtbauer EM. M-twist is an inhibitor of muscle differentiation. Dev Biol. 1994;165(2):537–44.CrossRefPubMedGoogle Scholar
  71. 71.
    Spicer DB, Rhee J, Cheung WL, Lassar AB. Inhibition of myogenic bHLH and MEF2 transcription factors by the bHLH protein twist. Science. 1996;272(5267):1476–80.CrossRefPubMedGoogle Scholar
  72. 72.
    Hebrok M, Fuchtbauer A, Fuchtbauer EM. Repression of muscle-specific gene activation by the murine twist protein. Exp Cell Res. 1997;232(2):295–303.CrossRefPubMedGoogle Scholar
  73. 73.
    Mastroyiannopoulos NP, Antoniou AA, Koutsoulidou A, Uney JB, Phylactou LA. Twist reverses muscle cell differentiation through transcriptional down-regulation of myogenin. Biosci Rep. 2013:33(6).Google Scholar
  74. 74.
    Mastroyiannopoulos NP, Nicolaou P, Anayasa M, Uney JB, Phylactou LA. Down-regulation of myogenin can reverse terminal muscle cell differentiation. PLoS One. 2012;7(1):e29896.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Pajcini KV, Corbel SY, Sage J, Pomerantz JH, Blau HM. Transient inactivation of Rb and ARF yields regenerative cells from postmitotic mammalian muscle. Cell Stem Cell. 2010;7(2):198–213.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Rosania GR, Chang YT, Perez O, Sutherlin D, Dong H, Lockhart DJ, Schultz PG. Myoseverin, a microtubule-binding molecule with novel cellular effects. Nat Biotechnol. 2000;18(3):304–8.CrossRefPubMedGoogle Scholar
  77. 77.
    Perez OD, Chang YT, Rosania G, Sutherlin D, Schultz PG. Inhibition and reversal of myogenic differentiation by purine-based microtubule assembly inhibitors. Chem Biol. 2002;9(4):475–83.CrossRefPubMedGoogle Scholar
  78. 78.
    Duckmanton A, Kumar A, Chang YT, Brockes JP. A single-cell analysis of myogenic dedifferentiation induced by small molecules. Chem Biol. 2005;12(10):1117–26.CrossRefPubMedGoogle Scholar
  79. 79.
    Paliwal P, Conboy IM. Inhibitors of tyrosine phosphatases and apoptosis reprogram lineage-marked differentiated muscle to myogenic progenitor cells. Chem Biol. 2011;18(9):1153–66.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Castaldi L, Serra C, Moretti F, Messina G, Paoletti R, Sampaolesi M, Torgovnick A, Baiocchi M, Padula F, Pisaniello A, Molinaro M, Cossu G, Levrero M, Bouche M. Bisperoxovanadium, a phospho-tyrosine phosphatase inhibitor, reprograms myogenic cells to acquire a pluripotent, circulating phenotype. FASEB J. 2007;21(13):3573–83.CrossRefPubMedGoogle Scholar
  81. 81.
    Mu X, Peng H, Pan H, Huard J, Li Y. Study of muscle cell dedifferentiation after skeletal muscle injury of mice with a Cre-Lox system. PLoS One. 2011;6(2):e16699.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Mu X, Xiang G, Rathbone CR, Pan H, Bellayr IH, Walters TJ, Li Y. Slow-adhering stem cells derived from injured skeletal muscle have improved regenerative capacity. Am J Pathol. 2011;179(2):931–41.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Chen X, Mao Z, Liu S, Liu H, Wang X, Wu H, Wu Y, Zhao T, Fan W, Li Y, Yew DT, Kindler PM, Li L, He Q, Qian L, Wang X, Fan M. Dedifferentiation of adult human myoblasts induced by ciliary neurotrophic factor in vitro. Mol Biol Cell. 2005;16(7):3140–51.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Helgren ME, Squinto SP, Davis HL, Parry DJ, Boulton TG, Heck CS, Zhu Y, Yancopoulos GD, Lindsay RM, DiStefano PS. Trophic effect of ciliary neurotrophic factor on denervated skeletal muscle. Cell. 1994;76(3):493–504.CrossRefPubMedGoogle Scholar
  85. 85.
    Vial C, Zuniga LM, Cabello-Verrugio C, Canon P, Fadic R, Brandan E. Skeletal muscle cells express the profibrotic cytokine connective tissue growth factor (CTGF/CCN2), which induces their dedifferentiation. J Cell Physiol. 2008;215(2):410–21.CrossRefPubMedGoogle Scholar
  86. 86.
    Cappellari O, Benedetti S, Innocenzi A, Tedesco FS, Moreno-Fortuny A, Ugarte G, Lampugnani MG, Messina G, Cossu G. Dll4 and PDGF-BB convert committed skeletal myoblasts to pericytes without erasing their myogenic memory. Dev Cell. 2013;24(6):586–99.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Xiaobing Fu
    • 1
  • Andong Zhao
    • 2
  • Tian Hu
    • 3
  1. 1.Key Laboratory of Wound Repair and Regeneration of PLAThe First Hospital Affiliated to the PLA General HospitalBeijingChina
  2. 2.Tianjin Medical UniversityTianjinChina
  3. 3.School of MedicineNankai UniversityTianjinChina

Personalised recommendations