Skip to main content

Dedifferentiation and the Heart

  • Chapter
  • First Online:
Cellular Dedifferentiation and Regenerative Medicine
  • 669 Accesses

Abstract

Mending a broken heart is not only a thing people do when their feelings and sensibilities get hurt, but it is also the dream for generations of cardiologists. Heart disease, or cardiovascular diseases, constitutes one leading cause for current morbidity and mortality. Scientists and physicians could only modulate patients’ heart function or use supportive methods on heart disease. The ability of heart regeneration in lower vertebrate animals has got quite admiring looks from us human beings. Accordingly, the mechanisms of heart regeneration in animals and the barriers of that in humans have got intensive investigations. Nowadays, the centrosome has been found to be associated with cardiomyocyte proliferation. The dissolution of a centrosome would halt cardiomyocyte proliferation and bog down the cell cycle in G0/G1 phase. And relevant underlying mechanism has been intensively investigated, including the barrier of human cardiomyocyte proliferation, manipulation of reentering cell cycle, epigenetic regulation of cardiomyocyte regeneration, and other stem cells or progenitor cells in the heart. The author has compiled current researches and literatures on the heart regeneration model, cardiomyocyte dedifferentiation, and the cell cycle regulation of cardiomyocytes. New techniques and perspectives are also included in this review, such as small molecular regulator, miRNA, and epigenetic modulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJL. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet. 2006;367(9524):1747–57.

    Article  PubMed  Google Scholar 

  2. Jessup M, Brozena S. Medical progress: heart failure. N Engl J Med. 2003;348(20):2007–18.

    Article  PubMed  Google Scholar 

  3. Bui AL, Horwich TB, Fonarow GC. Epidemiology and risk profile of heart failure. Nat Rev Cardiol. 2011;8(1):30–41.

    Article  PubMed  Google Scholar 

  4. Macmahon HE. Hyperplasia and regeneration of the myocardium in infants and in children. Am J Pathol. 1937;13(5):845–54.5.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. McMahon JT, Ratliff NB. Regeneration of adult human myocardium after acute heart transplant rejection. J Heart Transplant. 1990;9(5):554–67.

    CAS  PubMed  Google Scholar 

  6. Kajstura J, Leri A, Finato N, Di Loreto C, Beltrami CA, Anversa P. Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci U S A. 1998;95(15):8801–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, Nadal-Ginard B, Silvestri F, Leri A, Beltrami CA, Anversa P. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med. 2001;344(23):1750–7.

    Article  CAS  PubMed  Google Scholar 

  8. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisen J. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kajstura J, Urbanek K, Perl S, Hosoda T, Zheng HQ, Ogorek B, Ferreira-Martins J, Goichberg P, Rondon-Clavo C, Sanada F, D’Amario D, Rota M, del Monte F, Orlic D, Tisdale J, Leri A, Anversa P. Cardiomyogenesis in the adult human heart. Circ Res. 2010;107(2):305–U307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mollova M, Bersell K, Walsh S, Savla J, Das LT, Park SY, Silberstein LE, dos Remedios CG, Graham D, Colan S, Kuhn B. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci U S A. 2013;110(4):1446–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tang Y, Nyengaard JR, Andersen JB, Baandrup U, Gundersen HJG. The application of stereological methods for estimating structural parameters in the human heart. Anat Rec (Hoboken). 2009;292(10):1630–47.

    Article  Google Scholar 

  12. Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science. 2002;298(5601):2188–90.

    Article  CAS  PubMed  Google Scholar 

  13. Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, Evans T, MacRae CA, Stainier DYR, Poss KD. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature. 2010;464(7288):601–U162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jopling C, Sleep E, Raya M, Marti M, Raya A, Belmonte JCI. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature. 2010;464(7288):606–U168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lepilina A, Coon AN, Kikuchi K, Holdway JE, Roberts RW, Burns CG, Poss KD. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell. 2006;127(3):607–19.

    Article  CAS  PubMed  Google Scholar 

  16. Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ. Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Phys. 1996;271(5 Pt 2):H2183–9.

    CAS  Google Scholar 

  17. Soonpaa MH, Field LJ. Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts. Am J Phys. 1997;272(1 Pt 2):H220–6.

    CAS  Google Scholar 

  18. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331(6020):1078–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sleep E, Boue S, Jopling C, Raya M, Raya A, Belmonte JCI. Transcriptomics approach to investigate zebrafish heart regeneration. J Cardiovasc Med. 2010;11(5):369–80.

    Article  Google Scholar 

  20. Lien CL, Schebesta M, Makino S, Weber GJ, Keating MT. Gene expression analysis of zebrafish heart regeneration. PLoS Biol. 2006;4(8):1386–96.

    Article  CAS  Google Scholar 

  21. Zhang YQ, Li TS, Lee ST, Wawrowsky KA, Cheng K, Galang G, Malliaras K, Abraham MR, Wang C, Marban E. Dedifferentiation and proliferation of mammalian cardiomyocytes. PLoS One. 2010;5(9):e12559.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rucker-Martin C, Pecker F, Godreau D, Hatem SN. Dedifferentiation of atrial myocytes during atrial fibrillation: role of fibroblast proliferation in vitro. Cardiovasc Res. 2002;55(1):38–52.

    Article  CAS  PubMed  Google Scholar 

  23. Dispersyn GD, Mesotten L, Meuris B, Maes A, Mortelmans L, Flameng W, Ramaekers F, Borgers M. Dissociation of cardiomyocyte apoptosis and dedifferentiation in infarct border zones. Eur Heart J. 2002;23(11):849–57.

    Article  CAS  PubMed  Google Scholar 

  24. Ausma J, Thone F, Dispersyn GD, Flameng W, Vanoverschelde JL, Raemaekers FCS, Borgers M. Dedifferentiated cardiomyocytes from chronic hibernating myocardium are ischemia-tolerant. Mol Cell Biochem. 1998;186(1-2):159–68.

    Article  CAS  PubMed  Google Scholar 

  25. Driesen RB, Verheyen FK, Debie W, Blaauw E, Babiker FA, Cornelussen RNM, Ausma J, Lenders MH, Borgers M, Chaponnier C, Ramaekers FCS. Re-expression of alpha skeletal actin as a marker for dedifferentiation in cardiac pathologies. J Cell Mol Med. 2009;13(5):896–908.

    Article  CAS  PubMed  Google Scholar 

  26. Hein S, Block T, Zimmermann R, Kostin S, Scheffold T, Kubin T, Klovekorn WP, Schaper J. Deposition of nonsarcomeric alpha-actinin in cardiomyocytes from patients with dilated cardiomyopathy or chronic pressure overload. Exp Clin Cardiol. 2009;14(3):E68–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kubin T, Poling J, Kostin S, Gajawada P, Hein S, Rees W, Wietelmann A, Tanaka M, Lorchner H, Schimanski S, Szibor M, Warnecke H, Braun T. Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell. 2011;9(5):420–32.

    Article  CAS  PubMed  Google Scholar 

  28. Rumyantsev PP. Interrelations of the proliferation and differentiation processes during cardiact myogenesis and regeneration. Int Rev Cytol. 1977;51:186–273.

    CAS  PubMed  Google Scholar 

  29. Wills AA, Holdway JE, Major RJ, Poss KD. Regulated addition of new myocardial and epicardial cells fosters homeostatic cardiac growth and maintenance in adult zebrafish. Development. 2008;135(1):183–92.

    Article  CAS  PubMed  Google Scholar 

  30. Li F, Wang X, Capasso JM, Gerdes AM. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol. 1996;28(8):1737–46.

    Article  CAS  PubMed  Google Scholar 

  31. Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu TD, Guerquin-Kern JL, Lechene CP, Lee RT. Mammalian heart renewal by pre-existing cardiomyocytes. Nature. 2013;493(7432):433–U186.

    Article  CAS  PubMed  Google Scholar 

  32. Malliaras K, Zhang Y, Seinfeld J, Galang G, Tseliou E, Cheng K, Sun B, Aminzadeh M, Marban E. Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart. EMBO Mol Med. 2013;5(2):191–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bersell K, Arab S, Haring B, Kuhn B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell. 2009;138(2):257–70.

    Article  CAS  PubMed  Google Scholar 

  34. Olivetti G, Cigola E, Maestri R, Corradi D, Lagrasta C, Gambert SR, Anversa P. Aging, cardiac hypertrophy and ischemic cardiomyopathy do not affect the proportion of mononucleated and multinucleated myocytes in the human heart. J Mol Cell Cardiol. 1996;28(7):1463–77.

    Article  CAS  PubMed  Google Scholar 

  35. Obaya AJ, Sedivy JM. Regulation of cyclin-Cdk activity in mammalian cells. Cell Mol Life Sci. 2002;59(1):126–42.

    Article  CAS  PubMed  Google Scholar 

  36. Pasumarthi KBS, Field LJ. Cardiomyocyte cell cycle regulation. Circ Res. 2002;90(10):1044–54.

    Article  CAS  PubMed  Google Scholar 

  37. Brooks G, Poolman RA, McGill CJ, Li JM. Expression and activities of cyclins and cyclin-dependent kinases in developing rat ventricular myocytes. J Mol Cell Cardiol. 1997;29(8):2261–71.

    Article  CAS  PubMed  Google Scholar 

  38. Brooks G, Poolman RA, Li JM. Arresting developments in the cardiac myocyte cell cycle: role of cyclin-dependent kinase inhibitors. Cardiovasc Res. 1998;39(2):301–11.

    Article  CAS  PubMed  Google Scholar 

  39. Poolman RA, Brooks G. Expressions and activities of cell cycle regulatory molecules during the transition from myocyte hyperplasia to hypertrophy. J Mol Cell Cardiol. 1998;30(10):2121–35.

    Article  CAS  PubMed  Google Scholar 

  40. Poolman RA, Gilchrist R, Brooks G. Cell cycle profiles and expressions of p21CIP1 AND P27KIP1 during myocyte development. Int J Cardiol. 1998;67(2):133–42.

    Article  CAS  PubMed  Google Scholar 

  41. Sdek P, Zhao P, Wang YP, Huang CJ, Ko CY, Butler PC, Weiss JN, MacLellan WR. Rb and p130 control cell cycle gene silencing to maintain the postmitotic phenotype in cardiac myocytes. J Cell Biol. 2011;194(3):407–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wamstad JA, Alexander JM, Truty RM, Shrikumar A, Li FG, Eilertson KE, Ding HM, Wylie JN, Pico AR, Capra JA, Erwin G, Kattman SJ, Keller GM, Srivastava D, Levine SS, Pollard KS, Holloway AK, Boyer LA, Bruneau BG. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell. 2012;151(1):206–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Delgado-Olguin P, Huang Y, Li X, Christodoulou D, Seidman CE, Seidman JG, Tarakhovsky A, Bruneau BG. Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis. Nat Genet. 2012;44(3):343–U158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Matkovich SJ, Edwards JR, Grossenheider TC, Strong CD, Dorn GW. Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs. Proc Natl Acad Sci U S A. 2014;111(33):12264–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Porrello ER, Johnson BA, Aurora AB, Simpson E, Nam YJ, Matkovich SJ, Dorn GW, van Rooij E, Olson EN. miR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res. 2011;109(6):670–U208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yin VP, Lepilina A, Smith A, Poss KD. Regulation of zebrafish heart regeneration by miR-133. Dev Biol. 2012;365(2):319–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wystub K, Besser J, Bachmann A, Boettger T, Braun T. miR-1/133a clusters cooperatively specify the cardiomyogenic lineage by adjustment of myocardin levels during embryonic heart development. PLoS Genet. 2013;9(9):e1003793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wei YS, Peng SW, Wu M, Sachidanandam R, Tu ZD, Zhang SH, Falce C, Sobie EA, Lebeche D, Zhao Y. Multifaceted roles of miR-1s in repressing the fetal gene program in the heart. Cell Res. 2014;24(3):278–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Di Stefano V, Giacca M, Capogrossi MC, Crescenzi M, Martelli F. Knockdown of cyclin-dependent kinase inhibitors induces cardiomyocyte re-entry in the cell cycle. J Biol Chem. 2011;286(10):8644–54.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Soonpaa MH, Koh GY, Pajak L, Jing S, Wang H, Franklin MT, Kim KK, Field LJ. Cyclin D1 overexpression promotes cardiomyocyte DNA synthesis and multinucleation in transgenic mice. J Clin Invest. 1997;99(11):2644–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pasumarthi KBS, Nakajima H, Nakajima HO, Soonpaa MH, Field LJ. Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ Res. 2005;96(1):110–8.

    Article  CAS  PubMed  Google Scholar 

  52. Chaudhry HW, Dashoush NH, Tang HY, Zhang L, Wang XY, Wu EX, Wolgemuth DJ. Cyclin A2 mediates cardiomyocyte mitosis in the postmitotic myocardium. J Biol Chem. 2004;279(34):35858–66.

    Article  CAS  PubMed  Google Scholar 

  53. Woo YJ, Panlilio CM, Cheng RK, Liao GP, Atluri P, Hsu VM, Cohen JE, Chaudhry HW. Therapeutic delivery of cyclin A2 induces myocardial regeneration and enhances cardiac function in ischemic heart failure. Circulation. 2006;114:I206–13.

    Article  PubMed  Google Scholar 

  54. Agah R, Kirshenbaum LA, Abdellatif M, Truong LD, Chakraborty S, Michael LH, Schneider MD. Adenoviral delivery of E2F-1 directs cell cycle reentry and p53-independent apoptosis in postmitotic adult myocardium in vivo. J Clin Invest. 1997;100(11):2722–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ebelt H, Hufnagel N, Neuhaus P, Neuhaus H, Gajawada P, Simm A, Muller-Werdan U, Werdan K, Braun T. Divergent siblings – E2F2 and E2F4 but not E2F1 and E2F3 induce DNA synthesis in cardiomyocytes without activation of apoptosis. Circ Res. 2005;96(5):509–17.

    Article  CAS  PubMed  Google Scholar 

  56. Ebelt H, Zhang Y, Kampke A, Xu J, Schlitt A, Buerke M, Muller-Werdan U, Werdan K, Braun T. E2F2 expression induces proliferation of terminally differentiated cardiomyocytes in vivo. Cardiovasc Res. 2008;80(2):219–26.

    Article  CAS  PubMed  Google Scholar 

  57. MacLellan WR, Garcia A, Oh H, Frenkel P, Jordan MC, Roos KP, Schneider MD. Overlapping roles of pocket proteins in the myocardium are unmasked by germ line deletion of p130 plus heart-specific deletion of Rb. Mol Cell Biol. 2005;25(6):2486–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mahmoud AI, Kocabas F, Muralidhar SA, Kimura W, Koura AS, Thet S, Porrello ER, Sadek HA. Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature. 2013;497(7448):249–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kerkela R, Kockeritz L, MacAulay K, Zhou J, Doble BW, Beahm C, Greytak S, Woulfe K, Trivedi CM, Woodgett JR, Epstein JA, Force T, Huggins GS. Deletion of GSK-3 beta in mice leads to hypertrophic cardiomyopathy secondary to cardiomyoblast hyperproliferation. J Clin Investig. 2008;118(11):3609–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gao RL, Zhang J, Cheng LQ, Wu XS, Dong W, Yang XC, Li TC, Liu XF, Xu YB, Li XY, Zhou MD. A phase II, randomized, double-blind, multicenter, based on standard therapy, placebo-controlled study of the efficacy and safety of recombinant human neuregulin-1 in patients with chronic heart failure. J Am Coll Cardiol. 2010;55(18):1907–14.

    Article  CAS  PubMed  Google Scholar 

  61. Jabbour A, Hayward CS, Keogh AM, Kotlyar E, McCrohon JA, England JF, Amor R, Liu XF, Li XY, Zhou MD, Graham RM, Macdonald PS. Parenteral administration of recombinant human neuregulin-1 to patients with stable chronic heart failure produces favourable acute and chronic haemodynamic responses. Eur J Heart Fail. 2011;13(1):83–92.

    Article  CAS  PubMed  Google Scholar 

  62. Engel FB, Schebesta M, Duong MT, Lu G, Ren SX, Madwed JB, Jiang HP, Wang Y, Keating MT. P38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev. 2005;19(10):1175–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Engel FB, Hsieh PC, Lee RT, Keating MT. FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci U S A. 2006;103(42):15546–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, Martin JF. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 2011;332(6028):458–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Heallen T, Morikawa Y, Leach J, Tao G, Willerson JT, Johnson RL, Martin JF. Hippo signaling impedes adult heart regeneration. Development. 2013;140(23):4683–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xin M, Kim Y, Sutherland LB, Qi XX, McAnally J, Schwartz RJ, Richardson JA, Bassel-Duby R, Olson EN. Regulation of insulin-like growth factor signaling by yap governs cardiomyocyte proliferation and embryonic heart size. Sci Signal. 2011;4(196):ra70.

    Article  PubMed  PubMed Central  Google Scholar 

  67. von Gise A, Lin ZQ, Schlegelmilch K, Honor LB, Pan GM, Buck JN, Ma Q, Ishiwata T, Zhou B, Camargo FD, Pu WT. YAP1, the nuclear target of hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci U S A. 2012;109(7):2394–9.

    Article  Google Scholar 

  68. Tseng AS, Engel FB, Keating MT. The GSK-3 inhibitor BIO promotes proliferation in mammalian cardiomyocytes. Chem Biol. 2006;13(9):957–63.

    Article  CAS  PubMed  Google Scholar 

  69. Kuhn B, del Monte F, Hajjar RJ, Chang YS, Lebeche D, Arab S, Keating MT. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med. 2007;13(8):962–9.

    Article  PubMed  Google Scholar 

  70. Lorts A, Schwanekamp JA, Elrod JW, Sargent MA, Molkentin JD. Genetic manipulation of periostin expression in the heart does not affect myocyte content, cell cycle activity, or cardiac repair. Circ Res. 2009;104(1):e1–7.

    Article  CAS  PubMed  Google Scholar 

  71. Porrello ER, Mahmoud AI, Simpson E, Johnson BA, Grinsfelder D, Canseco D, Mammen PP, Rothermel BA, Olson EN, Sadek HA. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci U S A. 2013;110(1):187–92.

    Article  CAS  PubMed  Google Scholar 

  72. Hullinger TG, Montgomery RL, Seto AG, Dickinson BA, Semus HM, Lynch JM, Dalby CM, Robinson K, Stack C, Latimer PA, Hare JM, Olson EN, van Rooij E. Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res. 2012;110(1):71–81.

    Article  CAS  PubMed  Google Scholar 

  73. Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, Giacca M. Functional screening identifies miRNAs inducing cardiac regeneration. Nature. 2012;492(7429):376–81.

    Article  CAS  PubMed  Google Scholar 

  74. Chen JH, Huang ZP, Seok HY, Ding J, Kataoka M, Zhang Z, Hu XY, Wang G, Lin ZQ, Wang S, Pu WT, Liao RL, Wang DZ. mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res. 2013;112(12):1557–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tallini YN, Greene KS, Craven M, Spealman A, Breitbach M, Smith J, Fisher PJ, Steffey M, Hesse M, Doran RM, Woods A, Singh B, Yen A, Fleischmann BK, Kotlikoff MI. c-Kit expression identifies cardiovascular precursors in the neonatal heart. Proc Natl Acad Sci U S A. 2009;106(6):1808–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kubo H, Jaleel N, Kumarapeli A, Berretta RM, Bratinov G, Shan XY, Wang HM, Houser SR, Margulies KB. Increased cardiac myocyte progenitors in failing human hearts. Circulation. 2008;118(6):649–57.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascirnbene A, De Angelis A, Yasuzawa-Amano S, Trofimova I, Siggins RW, LeCapitaine N, Cascapera S, Beltrami AP, D’Alessandro DA, Zias E, Quaini F, Urbanek K, Michler RE, Bolli R, Kajstura J, Leri A, Anversa P. Human cardiac stem cells. Proc Natl Acad Sci U S A. 2007;104(35):14068–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tang XL, Rokosh G, Sanganalmath SK, Yuan F, Sato H, Mu J, Dai S, Li C, Chen N, Peng Y, Dawn B, Hunt G, Leri A, Kajstura J, Tiwari S, Shirk G, Anversa P, Bolli R. Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation. 2010;121(2):293–305.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zaruba MM, Soonpaa M, Reuter S, Field LJ. Cardiomyogenic potential of c-Kit(+)-expressing cells derived from neonatal and adult mouse hearts. Circulation. 2010;121(18):1992–U1956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142(3):375–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu JD, Srivastava D. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 2012;485(7400):593–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Song K, Nam YJ, Luo X, Qi X, Tan W, Huang GN, Acharya A, Smith CL, Tallquist MD, Neilson EG, Hill JA, Bassel-Duby R, Olson EN. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature. 2012;485(7400):599–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nam YJ, Song KH, Luo X, Daniel E, Lambeth K, West K, Hill JA, DiMaio JM, Baker LA, Bassel-Duby R, Olson EN. Reprogramming of human fibroblasts toward a cardiac fate. Proc Natl Acad Sci U S A. 2013;110(14):5588–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang RL, Han PD, Yang HB, Ouyang KF, Lee D, Lin YF, Ocorr K, Kang GS, Chen J, Stainier DYR, Yelon D, Chi NC. In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature. 2013;498(7455):497–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fu, X., Zhao, A., Hu, T. (2018). Dedifferentiation and the Heart. In: Cellular Dedifferentiation and Regenerative Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56179-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56179-9_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56177-5

  • Online ISBN: 978-3-662-56179-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics