Skip to main content

Dedifferentiation and Organ Regeneration

  • Chapter
  • First Online:
  • 713 Accesses

Abstract

Regenerative medicine is an emerging research trend in current biology and medicine. The envious ability of regeneration in lower animals has attracted generations of scientists to explore and investigate the underlying mechanisms. The organogenesis, or organ regeneration, which is composed of parenchyma, functioning cell populations, and vasculature, is indispensable for terrestrial life. In recent years, extensive progress was done in defining organ development’s temporal progression, and exciting findings have been led to by this, including the derivation of assorted epithelium from pluripotent stem cells and the discovery of developmental pathways that are objectives for novel therapeutics. Fresh insights have been also provided by these discoveries into different organs’ regenerative capability. In this review, the author highlights several important and productive research areas in current regenerative medicine. Different animal models are studied with emphasis on specific organs in these animals, ranging from the regeneration of salamander limb, Xenopus tadpole tail, to zebrafish heart and fin. Molecular mechanism is the core content of relevant research, which could be modified and manipulated in the translation to human-based researches and clinical practice. In addition to the common research direction of growth factor, signaling pathway, transcription factors, and epigenetic modulation, this review has also included progenitor cells and potentials of dedifferentiation and transdifferentiation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Reddien PW, Sanchez Alvarado A. Fundamentals of planarian regeneration. Annu Rev Cell Dev Biol. 2004;20:725–57.

    Article  CAS  PubMed  Google Scholar 

  2. Montgomery JR, Coward SJ. On the minimal size of a planarian capable of regeneration. Trans Am Microsc Soc. 1974;93(3):386–91.

    Article  CAS  PubMed  Google Scholar 

  3. Aboobaker AA. Planarian stem cells: a simple paradigm for regeneration. Trends Cell Biol. 2011;21(5):304–11.

    Article  CAS  PubMed  Google Scholar 

  4. Bosch TC. Why polyps regenerate and we don’t: towards a cellular and molecular framework for Hydra regeneration. Dev Biol. 2007;303(2):421–33.

    Article  CAS  PubMed  Google Scholar 

  5. Glauber KM, Dana CE, Steele RE. Hydra. Curr Biol. 2010;20(22):R964–5.

    Article  CAS  PubMed  Google Scholar 

  6. Wittlieb J, et al. Transgenic Hydra allow in vivo tracking of individual stem cells during morphogenesis. Proc Natl Acad Sci U S A. 2006;103(16):6208–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nacu E, Tanaka EM. Limb regeneration: a new development? Annu Rev Cell Dev Biol. 2011;27:409–40.

    Article  CAS  PubMed  Google Scholar 

  8. King RS, Newmark PA. The cell biology of regeneration. J Cell Biol. 2012;196(5):553–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Simon HG. Salamanders and fish can regenerate lost structures--why can’t we? BMC Biol. 2012;10:15.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tanaka EM, Reddien PW. The cellular basis for animal regeneration. Dev Cell. 2011;21(1):172–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Deuchar EM. Regeneration of the tail bud in Xenopus embryos. J Exp Zool. 1975;192(3):381–90.

    Article  CAS  PubMed  Google Scholar 

  12. Sugiura T, et al. Differential gene expression between the embryonic tail bud and regenerating larval tail in Xenopus laevis. Dev Growth Differ. 2004;46(1):97–105.

    Article  CAS  PubMed  Google Scholar 

  13. Gargioli C, Slack JM. Cell lineage tracing during Xenopus tail regeneration. Development. 2004;131(11):2669–79.

    Article  CAS  PubMed  Google Scholar 

  14. Makino S, et al. Heat-shock protein 60 is required for blastema formation and maintenance during regeneration. Proc Natl Acad Sci U S A. 2005;102(41):14599–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Poss KD, et al. Mps1 defines a proximal blastemal proliferative compartment essential for zebrafish fin regeneration. Development. 2002;129(22):5141–9.

    CAS  PubMed  Google Scholar 

  16. Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science. 2002;298(5601):2188–90.

    Article  CAS  PubMed  Google Scholar 

  17. Jopling C, et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature. 2010;464(7288):606–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kikuchi K, et al. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature. 2010;464(7288):601–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chablais F, et al. The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev Biol. 2011;11:21.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang J, et al. The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development. 2011;138(16):3421–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Michalopoulos GK, DeFrances MC. Liver regeneration. Science. 1997;276(5309):60–6.

    Article  CAS  PubMed  Google Scholar 

  22. Fausto N. Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatology. 2004;39(6):1477–87.

    Article  PubMed  Google Scholar 

  23. Fausto N, Campbell JS, Riehle KJ. Liver regeneration. Hepatology. 2006;43(2 Suppl 1):S45–53.

    Article  CAS  PubMed  Google Scholar 

  24. Turanyi E, et al. Immunohistochemical classification of ductular reactions in human liver. Histopathology. 2010;57(4):607–14.

    Article  PubMed  Google Scholar 

  25. Roskams T, et al. Oxidative stress and oval cell accumulation in mice and humans with alcoholic and nonalcoholic fatty liver disease. Am J Pathol. 2003;163(4):1301–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van Wolfswinkel JC, Wagner DE, Reddien PW. Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment. Cell Stem Cell. 2014;15(3):326–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Wagner DE, Ho JJ, Reddien PW. Genetic regulators of a pluripotent adult stem cell system in planarians identified by RNAi and clonal analysis. Cell Stem Cell. 2012;10(3):299–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hobmayer B, et al. Stemness in hydra – a current perspective. Int J Dev Biol. 2012;56(6–8):509–17.

    Article  CAS  PubMed  Google Scholar 

  29. Tu S, Johnson SL. Fate restriction in the growing and regenerating zebrafish fin. Dev Cell. 2011;20(5):725–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Knopf F, et al. Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin. Dev Cell. 2011;20(5):713–24.

    Article  CAS  PubMed  Google Scholar 

  31. Geurtzen K, et al. Mature osteoblasts dedifferentiate in response to traumatic bone injury in the zebrafish fin and skull. Development. 2014;141(11):2225–34.

    Article  CAS  PubMed  Google Scholar 

  32. Sousa S, et al. Differentiated skeletal cells contribute to blastema formation during zebrafish fin regeneration. Development. 2011;138(18):3897–905.

    Article  CAS  PubMed  Google Scholar 

  33. Reimer MM, et al. Motor neuron regeneration in adult zebrafish. J Neurosci. 2008;28(34):8510–6.

    Article  CAS  PubMed  Google Scholar 

  34. Dias TB, et al. Notch signaling controls generation of motor neurons in the lesioned spinal cord of adult zebrafish. J Neurosci. 2012;32(9):3245–52.

    Article  CAS  PubMed  Google Scholar 

  35. Wan J, Ramachandran R, Goldman D. HB-EGF is necessary and sufficient for Muller glia dedifferentiation and retina regeneration. Dev Cell. 2012;22(2):334–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fausett BV, Goldman D. A role for alpha1 tubulin-expressing Muller glia in regeneration of the injured zebrafish retina. J Neurosci. 2006;26(23):6303–13.

    Article  CAS  PubMed  Google Scholar 

  37. Bernardos RL, et al. Late-stage neuronal progenitors in the retina are radial Muller glia that function as retinal stem cells. J Neurosci. 2007;27(26):7028–40.

    Article  CAS  PubMed  Google Scholar 

  38. Ramachandran R, Fausett BV, Goldman D. Ascl1a regulates Muller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signalling pathway. Nat Cell Biol. 2010;12(11):1101–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen Y, Lin G, Slack JM. Control of muscle regeneration in the Xenopus tadpole tail by Pax7. Development. 2006;133(12):2303–13.

    Article  CAS  PubMed  Google Scholar 

  40. Yoshii C, et al. Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina. Dev Biol. 2007;303(1):45–56.

    Article  CAS  PubMed  Google Scholar 

  41. Filoni S. Retina and lens regeneration in anuran amphibians. Semin Cell Dev Biol. 2009;20(5):528–34.

    Article  PubMed  Google Scholar 

  42. Henry JJ, Tsonis PA. Molecular and cellular aspects of amphibian lens regeneration. Prog Retin Eye Res. 2010;29(6):543–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kragl M, et al. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature. 2009;460(7251):60–5.

    Article  CAS  PubMed  Google Scholar 

  44. Morrison JI, et al. Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population. J Cell Biol. 2006;172(3):433–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sandoval-Guzman T, et al. Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species. Cell Stem Cell. 2014;14(2):174–87.

    Article  CAS  PubMed  Google Scholar 

  46. Laube F, et al. Re-programming of newt cardiomyocytes is induced by tissue regeneration. J Cell Sci. 2006;119(Pt 22):4719–29.

    Article  CAS  PubMed  Google Scholar 

  47. Chiba C. The retinal pigment epithelium: an important player of retinal disorders and regeneration. Exp Eye Res. 2014;123:107–14.

    Article  CAS  PubMed  Google Scholar 

  48. Suetsugu-Maki R, et al. Lens regeneration in axolotl: new evidence of developmental plasticity. BMC Biol. 2012;10:103.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Porrello ER, et al. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331(6020):1078–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Porrello ER, et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci U S A. 2013;110(1):187–92.

    Article  CAS  PubMed  Google Scholar 

  51. Miyaoka Y, et al. Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration. Curr Biol. 2012;22(13):1166–75.

    Article  CAS  PubMed  Google Scholar 

  52. Taub R. Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol. 2004;5(10):836–47.

    Article  CAS  PubMed  Google Scholar 

  53. Malato Y, et al. Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration. J Clin Invest. 2011;121(12):4850–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Miyajima A, Tanaka M, Itoh T. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell. 2014;14(5):561–74.

    Article  CAS  PubMed  Google Scholar 

  55. Le Grand F, Rudnicki MA. Skeletal muscle satellite cells and adult myogenesis. Curr Opin Cell Biol. 2007;19(6):628–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Sun X, et al. Epidermal stem cells: an update on their potential in regenerative medicine. Expert Opin Biol Ther. 2013;13(6):901–10.

    Article  CAS  PubMed  Google Scholar 

  57. Scheib J, Hoke A. Advances in peripheral nerve regeneration. Nat Rev Neurol. 2013;9(12):668–76.

    Article  CAS  PubMed  Google Scholar 

  58. Gwon A. Lens regeneration in mammals: a review. Surv Ophthalmol. 2006;51(1):51–62.

    Article  PubMed  Google Scholar 

  59. Lange CS. Studies on the cellular basis of radiation lethality. I. The pattern of mortality in the whole-body irradiated planarian (Tricladida, Paludicola). Int J Radiat Biol Relat Stud Phys Chem Med. 1968;13(6):511–30.

    Article  CAS  PubMed  Google Scholar 

  60. Gremigni V, Miceli C, Puccinelli I. On the role of germ cells in planarian regeneration. I. A karyological investigation. J Embryol Exp Morphol. 1980;55:53–63.

    CAS  PubMed  Google Scholar 

  61. Newmark PA, Sanchez Alvarado A. Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev Biol. 2000;220(2):142–53.

    Article  CAS  PubMed  Google Scholar 

  62. Wagner DE, Wang IE, Reddien PW. Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science. 2011;332(6031):811–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bode HR. The interstitial cell lineage of hydra: a stem cell system that arose early in evolution. J Cell Sci. 1996;109(Pt 6):1155–64.

    CAS  PubMed  Google Scholar 

  64. David CN, Murphy S. Characterization of interstitial stem cells in hydra by cloning. Dev Biol. 1977;58(2):372–83.

    Article  CAS  PubMed  Google Scholar 

  65. Slack JM, et al. Cellular and molecular mechanisms of regeneration in Xenopus. Philos Trans R Soc Lond Ser B Biol Sci. 2004;359(1445):745–51.

    Article  CAS  Google Scholar 

  66. Ryffel GU, et al. Tagging muscle cell lineages in development and tail regeneration using Cre recombinase in transgenic Xenopus. Nucleic Acids Res. 2003;31(8):e44.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lepilina A, et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell. 2006;127(3):607–19.

    Article  CAS  PubMed  Google Scholar 

  68. Morrison JI, Borg P, Simon A. Plasticity and recovery of skeletal muscle satellite cells during limb regeneration. FASEB J. 2010;24(3):750–6.

    Article  CAS  PubMed  Google Scholar 

  69. Lo DC, Allen F, Brockes JP. Reversal of muscle differentiation during urodele limb regeneration. Proc Natl Acad Sci U S A. 1993;90(15):7230–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kumar A, et al. Plasticity of retrovirus-labelled myotubes in the newt limb regeneration blastema. Dev Biol. 2000;218(2):125–36.

    Article  CAS  PubMed  Google Scholar 

  71. Singh SP, Holdway JE, Poss KD. Regeneration of amputated zebrafish fin rays from de novo osteoblasts. Dev Cell. 2012;22(4):879–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bucher NL, Swaffield MN. The rate of incorporation of Labeled thymidine into the deoxyribonucleic acid of regenerating rat liver in relation to the amount of liver excised. Cancer Res. 1964;24:1611–25.

    CAS  PubMed  Google Scholar 

  73. Fabrikant JI. The kinetics of cellular proliferation in regenerating liver. J Cell Biol. 1968;36(3):551–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Grisham JW. A morphologic study of deoxyribonucleic acid synthesis and cell proliferation in regenerating rat liver; autoradiography with thymidine-H3. Cancer Res. 1962;22:842–9.

    CAS  PubMed  Google Scholar 

  75. Farber E. Similarities in the sequence of early histological changes induced in the liver of the rat by ethionine, 2-acetylamino-fluorene, and 3′-methyl-4-dimethylaminoazobenzene. Cancer Res. 1956;16(2):142–8.

    CAS  PubMed  Google Scholar 

  76. Dunsford HA, et al. Different lineages of chemically induced hepatocellular carcinoma in rats defined by monoclonal antibodies. Cancer Res. 1989;49(17):4894–900.

    CAS  PubMed  Google Scholar 

  77. Lazaro CA, et al. Generation of hepatocytes from oval cell precursors in culture. Cancer Res. 1998;58(23):5514–22.

    CAS  PubMed  Google Scholar 

  78. Theise ND, et al. The canals of Hering and hepatic stem cells in humans. Hepatology. 1999;30(6):1425–33.

    Article  CAS  PubMed  Google Scholar 

  79. Fickert P, et al. A new xenobiotic-induced mouse model of sclerosing cholangitis and biliary fibrosis. Am J Pathol. 2007;171(2):525–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Paku S, et al. Origin and structural evolution of the early proliferating oval cells in rat liver. Am J Pathol. 2001;158(4):1313–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dorrell C, et al. Prospective isolation of a bipotential clonogenic liver progenitor cell in adult mice. Genes Dev. 2011;25(11):1193–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Furuyama K, et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet. 2011;43(1):34–41.

    Article  CAS  PubMed  Google Scholar 

  83. Espanol-Suner R, et al. Liver progenitor cells yield functional hepatocytes in response to chronic liver injury in mice. Gastroenterology. 2012;143(6):1564–75. e7

    Article  PubMed  Google Scholar 

  84. Yanger K, et al. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev. 2013;27(7):719–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Michelotti GA, et al. Smoothened is a master regulator of adult liver repair. J Clin Invest. 2013;123(6):2380–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kordes C, et al. Hepatic stellate cells contribute to progenitor cells and liver regeneration. J Clin Invest. 2014;124(12):5503–15.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kiso S, et al. Role of heparin-binding epidermal growth factor-like growth factor as a hepatotrophic factor in rat liver regeneration after partial hepatectomy. Hepatology. 1995;22(5):1584–90.

    CAS  PubMed  Google Scholar 

  88. Kiso S, et al. Liver regeneration in heparin-binding EGF-like growth factor transgenic mice after partial hepatectomy. Gastroenterology. 2003;124(3):701–7.

    Article  CAS  PubMed  Google Scholar 

  89. Mitchell C, et al. Heparin-binding epidermal growth factor-like growth factor links hepatocyte priming with cell cycle progression during liver regeneration. J Biol Chem. 2005;280(4):2562–8.

    Article  CAS  PubMed  Google Scholar 

  90. Khai NC, et al. In vivo hepatic HB-EGF gene transduction inhibits Fas-induced liver injury and induces liver regeneration in mice: a comparative study to HGF. J Hepatol. 2006;44(6):1046–54.

    Article  CAS  PubMed  Google Scholar 

  91. Berasain C, et al. Amphiregulin: an early trigger of liver regeneration in mice. Gastroenterology. 2005;128(2):424–32.

    Article  CAS  PubMed  Google Scholar 

  92. Jeffers MS, et al. Epidermal growth factor and erythropoietin infusion accelerate functional recovery in combination with rehabilitation. Stroke. 2014;45(6):1856–8.

    Article  CAS  PubMed  Google Scholar 

  93. Doan PL, et al. Epidermal growth factor regulates hematopoietic regeneration after radiation injury. Nat Med. 2013;19(3):295–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Franzke CW, et al. Epidermal ADAM17 maintains the skin barrier by regulating EGFR ligand-dependent terminal keratinocyte differentiation. J Exp Med. 2012;209(6):1105–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pastore S, et al. The epidermal growth factor receptor system in skin repair and inflammation. J Invest Dermatol. 2008;128(6):1365–74.

    Article  CAS  PubMed  Google Scholar 

  96. O’Keeffe GC, et al. Dopamine-induced proliferation of adult neural precursor cells in the mammalian subventricular zone is mediated through EGF. Proc Natl Acad Sci U S A. 2009;106(21):8754–9.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Wenczak BA, Lynch JB, Nanney LB. Epidermal growth factor receptor distribution in burn wounds. Implications for growth factor-mediated repair. J Clin Invest. 1992;90(6):2392–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Whitehead GG, et al. fgf20 is essential for initiating zebrafish fin regeneration. Science. 2005;310(5756):1957–60.

    Article  CAS  PubMed  Google Scholar 

  99. Del Rio-Tsonis K, et al. Conservation of fibroblast growth factor function in lens regeneration. Proc Natl Acad Sci U S A. 1997;94(25):13701–6.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bohm F, et al. FGF receptors 1 and 2 control chemically induced injury and compound detoxification in regenerating livers of mice. Gastroenterology. 2010;139(4):1385–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Uriarte I, et al. Identification of fibroblast growth factor 15 as a novel mediator of liver regeneration and its application in the prevention of post-resection liver failure in mice. Gut. 2013;62(6):899–910.

    Article  CAS  PubMed  Google Scholar 

  102. Padrissa-Altes S, et al. Control of hepatocyte proliferation and survival by Fgf receptors is essential for liver regeneration in mice. Gut. 2015;64(9):1444–53.

    Article  CAS  PubMed  Google Scholar 

  103. Schaap FG, et al. Prometheus’ little helper, a novel role for fibroblast growth factor 15 in compensatory liver growth. J Hepatol. 2013;59(5):1121–3.

    Article  CAS  PubMed  Google Scholar 

  104. Palmen M, et al. Fibroblast growth factor-1 improves cardiac functional recovery and enhances cell survival after ischemia and reperfusion: a fibroblast growth factor receptor, protein kinase C, and tyrosine kinase-dependent mechanism. J Am Coll Cardiol. 2004;44(5):1113–23.

    Article  CAS  PubMed  Google Scholar 

  105. Formiga FR, et al. Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration. J Control Release. 2014;173:132–9.

    Article  CAS  PubMed  Google Scholar 

  106. Conte C, et al. Fibroblast growth factor 1 induced during myogenesis by a transcription-translation coupling mechanism. Nucleic Acids Res. 2009;37(16):5267–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Behr B, et al. Fgf-9 is required for angiogenesis and osteogenesis in long bone repair. Proc Natl Acad Sci U S A. 2010;107(26):11853–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schmid GJ, et al. Fibroblast growth factor expression during skeletal fracture healing in mice. Dev Dyn. 2009;238(3):766–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Goldshmit Y, et al. Fgf-dependent glial cell bridges facilitate spinal cord regeneration in zebrafish. J Neurosci. 2012;32(22):7477–92.

    Article  CAS  PubMed  Google Scholar 

  110. Yang Y, et al. Promotion of skin regeneration in diabetic rats by electrospun core-sheath fibers loaded with basic fibroblast growth factor. Biomaterials. 2011;32(18):4243–54.

    Article  CAS  PubMed  Google Scholar 

  111. Chablais F, Jazwinska A. IGF signaling between blastema and wound epidermis is required for fin regeneration. Development. 2010;137(6):871–9.

    Article  CAS  PubMed  Google Scholar 

  112. Padin-Iruegas ME, et al. Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation. 2009;120(10):876–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. D’Amario D, et al. Insulin-like growth factor-1 receptor identifies a pool of human cardiac stem cells with superior therapeutic potential for myocardial regeneration. Circ Res. 2011;108(12):1467–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Ellison GM, et al. Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart. J Am Coll Cardiol. 2011;58(9):977–86.

    Article  CAS  PubMed  Google Scholar 

  115. Sanz S, et al. Expression of insulin-like growth factor I by activated hepatic stellate cells reduces fibrogenesis and enhances regeneration after liver injury. Gut. 2005;54(1):134–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Musaro A, et al. Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet. 2001;27(2):195–200.

    Article  CAS  PubMed  Google Scholar 

  117. Pelosi L, et al. Local expression of IGF-1 accelerates muscle regeneration by rapidly modulating inflammatory cytokines and chemokines. FASEB J. 2007;21(7):1393–402.

    Article  CAS  PubMed  Google Scholar 

  118. Zanou N, Gailly P. Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways. Cell Mol Life Sci. 2013;70(21):4117–30.

    Article  CAS  PubMed  Google Scholar 

  119. Ikemoto-Uezumi M, et al. Pro-IGF-II ameliorates age-related inefficient regenerative response by orchestrating self-reinforcement mechanism of muscle regeneration. Stem Cells. 2015;33(8):2456–68.

    Article  CAS  PubMed  Google Scholar 

  120. Redaelli CA, et al. Effect of vascular endothelial growth factor on functional recovery after hepatectomy in lean and obese mice. J Hepatol. 2004;40(2):305–12.

    Article  CAS  PubMed  Google Scholar 

  121. Bockhorn M, et al. VEGF is important for early liver regeneration after partial hepatectomy. J Surg Res. 2007;138(2):291–9.

    Article  CAS  PubMed  Google Scholar 

  122. Arsic N, et al. Vascular endothelial growth factor stimulates skeletal muscle regeneration in vivo. Mol Ther. 2004;10(5):844–54.

    Article  CAS  PubMed  Google Scholar 

  123. Messina S, et al. VEGF overexpression via adeno-associated virus gene transfer promotes skeletal muscle regeneration and enhances muscle function in mdx mice. FASEB J. 2007;21(13):3737–46.

    Article  CAS  PubMed  Google Scholar 

  124. Karkkainen AM, et al. Vascular endothelial growth factor-D transgenic mice show enhanced blood capillary density, improved postischemic muscle regeneration, and increased susceptibility to tumor formation. Blood. 2009;113(18):4468–75.

    Article  CAS  PubMed  Google Scholar 

  125. Kaigler D, et al. VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. J Bone Miner Res. 2006;21(5):735–44.

    Article  CAS  PubMed  Google Scholar 

  126. Kempen DH, et al. Effect of local sequential VEGF and BMP-2 delivery on ectopic and orthotopic bone regeneration. Biomaterials. 2009;30(14):2816–25.

    Article  CAS  PubMed  Google Scholar 

  127. De la Riva B, et al. Local controlled release of VEGF and PDGF from a combined brushite-chitosan system enhances bone regeneration. J Control Release. 2010;143(1):45–52.

    Article  PubMed  CAS  Google Scholar 

  128. Chung HJ, et al. Epicardial delivery of VEGF and cardiac stem cells guided by 3-dimensional PLLA mat enhancing cardiac regeneration and angiogenesis in acute myocardial infarction. J Control Release. 2015;205:218–30.

    Article  CAS  PubMed  Google Scholar 

  129. Javed F, et al. Significance of the platelet-derived growth factor in periodontal tissue regeneration. Arch Oral Biol. 2011;56(12):1476–84.

    Article  CAS  PubMed  Google Scholar 

  130. Yamano S, et al. The effect of a bioactive collagen membrane releasing PDGF or GDF-5 on bone regeneration. Biomaterials. 2014;35(8):2446–53.

    Article  CAS  PubMed  Google Scholar 

  131. Elangovan S, et al. The enhancement of bone regeneration by gene activated matrix encoding for platelet derived growth factor. Biomaterials. 2014;35(2):737–47.

    Article  CAS  PubMed  Google Scholar 

  132. Awuah PK, Nejak-Bowen KN, Monga SP. Role and regulation of PDGFRalpha signaling in liver development and regeneration. Am J Pathol. 2013;182(5):1648–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Reddien PW, et al. BMP signaling regulates the dorsal planarian midline and is needed for asymmetric regeneration. Development. 2007;134(22):4043–51.

    Article  CAS  PubMed  Google Scholar 

  134. Gavino MA, Reddien PW. A Bmp/Admp regulatory circuit controls maintenance and regeneration of dorsal-ventral polarity in planarians. Curr Biol. 2011;21(4):294–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Parikh P, et al. Regeneration of axons in injured spinal cord by activation of bone morphogenetic protein/Smad1 signaling pathway in adult neurons. Proc Natl Acad Sci U S A. 2011;108(19):E99–107.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Han M, et al. Digit regeneration is regulated by Msx1 and BMP4 in fetal mice. Development. 2003;130(21):5123–32.

    Article  CAS  PubMed  Google Scholar 

  137. Han M, et al. Development and regeneration of the neonatal digit tip in mice. Dev Biol. 2008;315(1):125–35.

    Article  CAS  PubMed  Google Scholar 

  138. Yu L, et al. BMP signaling induces digit regeneration in neonatal mice. Development. 2010;137(4):551–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Plikus MV, et al. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature. 2008;451(7176):340–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Deng Z, et al. mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during hair regeneration. J Mol Cell Biol. 2015;7(1):62–72.

    Article  CAS  PubMed  Google Scholar 

  141. Fraguas S, Barberan S, Cebria F. EGFR signaling regulates cell proliferation, differentiation and morphogenesis during planarian regeneration and homeostasis. Dev Biol. 2011;354(1):87–101.

    Article  CAS  PubMed  Google Scholar 

  142. Rink JC, Vu HT, Sanchez Alvarado A. The maintenance and regeneration of the planarian excretory system are regulated by EGFR signaling. Development. 2011;138(17):3769–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Fraguas S, et al. egr-4, a target of EGFR signaling, is required for the formation of the brain primordia and head regeneration in planarians. Development. 2014;141(9):1835–47.

    Article  CAS  PubMed  Google Scholar 

  144. Rojas-Munoz A, et al. ErbB2 and ErbB3 regulate amputation-induced proliferation and migration during vertebrate regeneration. Dev Biol. 2009;327(1):177–90.

    Article  CAS  PubMed  Google Scholar 

  145. Zhao L, et al. Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc Natl Acad Sci U S A. 2014;111(4):1403–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Raya A, et al. Activation of Notch signaling pathway precedes heart regeneration in zebrafish. Proc Natl Acad Sci U S A. 2003;100(Suppl 1):11889–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Nemir M, et al. The Notch pathway controls fibrotic and regenerative repair in the adult heart. Eur Heart J. 2014;35(32):2174–85.

    Article  CAS  PubMed  Google Scholar 

  148. Munch J, Gonzalez-Rajal A, de la Pompa JL. Notch regulates blastema proliferation and prevents differentiation during adult zebrafish fin regeneration. Development. 2013;140(7):1402–11.

    Article  CAS  PubMed  Google Scholar 

  149. Grotek B, Wehner D, Weidinger G. Notch signaling coordinates cellular proliferation with differentiation during zebrafish fin regeneration. Development. 2013;140(7):1412–23.

    Article  CAS  PubMed  Google Scholar 

  150. Kohler C, et al. Expression of Notch-1 and its ligand Jagged-1 in rat liver during liver regeneration. Hepatology. 2004;39(4):1056–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Rock JR, et al. Notch-dependent differentiation of adult airway basal stem cells. Cell Stem Cell. 2011;8(6):639–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Gurley KA, Rink JC, Sanchez Alvarado A. Beta-catenin defines head versus tail identity during planarian regeneration and homeostasis. Science. 2008;319(5861):323–7.

    Article  CAS  PubMed  Google Scholar 

  153. Adell T, et al. Smed-Evi/Wntless is required for beta-catenin-dependent and -independent processes during planarian regeneration. Development. 2009;136(6):905–10.

    Article  CAS  PubMed  Google Scholar 

  154. Petersen CP, Reddien PW. A wound-induced Wnt expression program controls planarian regeneration polarity. Proc Natl Acad Sci U S A. 2009;106(40):17061–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Petersen CP, Reddien PW. Smed-betacatenin-1 is required for anteroposterior blastema polarity in planarian regeneration. Science. 2008;319(5861):327–30.

    Article  CAS  PubMed  Google Scholar 

  156. Duffy DJ, et al. Wnt signaling promotes oral but suppresses aboral structures in Hydractinia metamorphosis and regeneration. Development. 2010;137(18):3057–66.

    Article  CAS  PubMed  Google Scholar 

  157. Kawakami Y, et al. Wnt/beta-catenin signaling regulates vertebrate limb regeneration. Genes Dev. 2006;20(23):3232–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Stoick-Cooper CL, et al. Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development. 2007;134(3):479–89.

    Article  CAS  PubMed  Google Scholar 

  159. Takeo M, et al. Wnt activation in nail epithelium couples nail growth to digit regeneration. Nature. 2013;499(7457):228–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Minear S, et al. Wnt proteins promote bone regeneration. Sci Transl Med. 2010;2(29):29ra30.

    Article  PubMed  CAS  Google Scholar 

  161. Kim JB, et al. Bone regeneration is regulated by wnt signaling. J Bone Miner Res. 2007;22(12):1913–23.

    Article  CAS  PubMed  Google Scholar 

  162. Monga SP, et al. Changes in WNT/beta-catenin pathway during regulated growth in rat liver regeneration. Hepatology. 2001;33(5):1098–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Yang J, et al. beta-catenin signaling in murine liver zonation and regeneration: a Wnt-Wnt situation! Hepatology. 2014;60(3):964–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Huch M, et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature. 2013;494(7436):247–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Polesskaya A, Seale P, Rudnicki MA. Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell. 2003;113(7):841–52.

    Article  CAS  PubMed  Google Scholar 

  166. Otto A, et al. Canonical Wnt signalling induces satellite-cell proliferation during adult skeletal muscle regeneration. J Cell Sci. 2008;121(Pt 17):2939–50.

    Article  CAS  PubMed  Google Scholar 

  167. Osakada F, et al. Wnt signaling promotes regeneration in the retina of adult mammals. J Neurosci. 2007;27(15):4210–9.

    Article  CAS  PubMed  Google Scholar 

  168. Stewart S, et al. Sequential and opposing activities of Wnt and BMP coordinate zebrafish bone regeneration. Cell Rep. 2014;6(3):482–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Haynes T, et al. BMP signaling mediates stem/progenitor cell-induced retina regeneration. Proc Natl Acad Sci U S A. 2007;104(51):20380–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Gozo MC, et al. Foxc2 induces Wnt4 and Bmp4 expression during muscle regeneration and osteogenesis. Cell Death Differ. 2013;20(8):1031–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Rink JC, et al. Planarian Hh signaling regulates regeneration polarity and links Hh pathway evolution to cilia. Science. 2009;326(5958):1406–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Singh BN, et al. Hedgehog and Wnt coordinate signaling in myogenic progenitors and regulate limb regeneration. Dev Biol. 2012;371(1):23–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Schnapp E, et al. Hedgehog signaling controls dorsoventral patterning, blastema cell proliferation and cartilage induction during axolotl tail regeneration. Development. 2005;132(14):3243–53.

    Article  CAS  PubMed  Google Scholar 

  174. Zhang J, et al. Laser ablation of the sonic hedgehog-a-expressing cells during fin regeneration affects ray branching morphogenesis. Dev Biol. 2012;365(2):424–33.

    Article  CAS  PubMed  Google Scholar 

  175. Taniguchi Y, Watanabe K, Mochii M. Notochord-derived hedgehog is essential for tail regeneration in Xenopus tadpole. BMC Dev Biol. 2014;14:27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Ochoa B, et al. Hedgehog signaling is critical for normal liver regeneration after partial hepatectomy in mice. Hepatology. 2010;51(5):1712–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Fendrich V, et al. Hedgehog signaling is required for effective regeneration of exocrine pancreas. Gastroenterology. 2008;135(2):621–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Peng YC, et al. Sonic hedgehog signals to multiple prostate stromal stem cells that replenish distinct stromal subtypes during regeneration. Proc Natl Acad Sci U S A. 2013;110(51):20611–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Karhadkar SS, et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature. 2004;431(7009):707–12.

    Article  CAS  PubMed  Google Scholar 

  180. Gude NA, et al. Activation of Notch-mediated protective signaling in the myocardium. Circ Res. 2008;102(9):1025–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Galliot B, Chera S. The Hydra model: disclosing an apoptosis-driven generator of Wnt-based regeneration. Trends Cell Biol. 2010;20(9):514–23.

    Article  CAS  PubMed  Google Scholar 

  182. Jaber-Hijazi F, et al. Planarian MBD2/3 is required for adult stem cell pluripotency independently of DNA methylation. Dev Biol. 2013;384(1):141–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Iskandar BJ, et al. Folate regulation of axonal regeneration in the rodent central nervous system through DNA methylation. J Clin Invest. 2010;120(5):1603–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Powell C, et al. Analysis of DNA methylation reveals a partial reprogramming of the Muller glia genome during retina regeneration. Proc Natl Acad Sci U S A. 2013;110(49):19814–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Hirose K, Shimoda N, Kikuchi Y. Transient reduction of 5-methylcytosine and 5-hydroxymethylcytosine is associated with active DNA demethylation during regeneration of zebrafish fin. Epigenetics. 2013;8(9):899–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Hubert A, et al. Epigenetic regulation of planarian stem cells by the SET1/MLL family of histone methyltransferases. Epigenetics. 2013;8(1):79–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Onal P, et al. Gene expression of pluripotency determinants is conserved between mammalian and planarian stem cells. EMBO J. 2012;31(12):2755–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Eisenhoffer GT, Kang H, Sanchez Alvarado A. Molecular analysis of stem cells and their descendants during cell turnover and regeneration in the planarian Schmidtea mediterranea. Cell Stem Cell. 2008;3(3):327–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Reddien PW, et al. Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Dev Cell. 2005;8(5):635–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Stewart S, Tsun ZY, Izpisua Belmonte JC. A histone demethylase is necessary for regeneration in zebrafish. Proc Natl Acad Sci U S A. 2009;106(47):19889–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Pfefferli C, et al. Specific NuRD components are required for fin regeneration in zebrafish. BMC Biol. 2014;12:30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Tseng AS, et al. HDAC activity is required during Xenopus tail regeneration. PLoS One. 2011;6(10):e26382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Huang J, Barr E, Rudnick DA. Characterization of the regulation and function of zinc-dependent histone deacetylases during rodent liver regeneration. Hepatology. 2013;57(5):1742–51.

    Article  PubMed  Google Scholar 

  194. Jin J, et al. Cooperation of C/EBP family proteins and chromatin remodeling proteins is essential for termination of liver regeneration. Hepatology. 2015;61(1):315–25.

    Article  CAS  PubMed  Google Scholar 

  195. Gaub P, et al. The histone acetyltransferase p300 promotes intrinsic axonal regeneration. Brain. 2011;134(Pt 7):2134–48.

    Article  PubMed  Google Scholar 

  196. Finelli MJ, Wong JK, Zou H. Epigenetic regulation of sensory axon regeneration after spinal cord injury. J Neurosci. 2013;33(50):19664–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Cho Y, et al. Injury-induced HDAC5 nuclear export is essential for axon regeneration. Cell. 2013;155(4):894–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Sasidharan V, et al. Identification of neoblast- and regeneration-specific miRNAs in the planarian Schmidtea mediterranea. RNA. 2013;19(10):1394–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Holman EC, et al. Microarray analysis of microRNA expression during axolotl limb regeneration. PLoS One. 2012;7(9):e41804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Eulalio A, et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature. 2012;492(7429):376–81.

    Article  CAS  PubMed  Google Scholar 

  201. Hullinger TG, et al. Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res. 2012;110(1):71–81.

    Article  CAS  PubMed  Google Scholar 

  202. Salehi S, et al. Human liver regeneration is characterized by the coordinated expression of distinct microRNA governing cell cycle fate. Am J Transplant. 2013;13(5):1282–95.

    Article  CAS  PubMed  Google Scholar 

  203. Plikus MV, et al. Epithelial stem cells and implications for wound repair. Semin Cell Dev Biol. 2012;23(9):946–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Senyo SE, et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature. 2013;493(7432):433–6.

    Article  CAS  PubMed  Google Scholar 

  205. Soonpaa MH, Field LJ. Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts. Am J Physiol. 1997;272(1 Pt 2):H220–6.

    CAS  PubMed  Google Scholar 

  206. Bergmann O, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Park D, et al. Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell. 2012;10(3):259–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Odelberg SJ, Kollhoff A, Keating MT. Dedifferentiation of mammalian myotubes induced by msx1. Cell. 2000;103(7):1099–109.

    Article  CAS  PubMed  Google Scholar 

  209. Rosania GR, et al. Myoseverin, a microtubule-binding molecule with novel cellular effects. Nat Biotechnol. 2000;18(3):304–8.

    Article  CAS  PubMed  Google Scholar 

  210. McGann CJ, Odelberg SJ, Keating MT. Mammalian myotube dedifferentiation induced by newt regeneration extract. Proc Natl Acad Sci U S A. 2001;98(24):13699–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Duckmanton A, et al. A single-cell analysis of myogenic dedifferentiation induced by small molecules. Chem Biol. 2005;12(10):1117–26.

    Article  CAS  PubMed  Google Scholar 

  212. Yang Z, et al. Mononuclear cells from dedifferentiation of mouse myotubes display remarkable regenerative capability. Stem Cells. 2014;32(9):2492–501.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Chen ZL, Yu WM, Strickland S. Peripheral regeneration. Annu Rev Neurosci. 2007;30:209–33.

    Article  PubMed  CAS  Google Scholar 

  214. Bonventre JV. Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J Am Soc Nephrol. 2003;14(Suppl 1):S55–61.

    Article  PubMed  Google Scholar 

  215. Guo JK, Cantley LG. Cellular maintenance and repair of the kidney. Annu Rev Physiol. 2010;72:357–76.

    Article  CAS  PubMed  Google Scholar 

  216. Kusaba T, et al. Differentiated kidney epithelial cells repair injured proximal tubule. Proc Natl Acad Sci U S A. 2014;111(4):1527–32.

    Article  CAS  PubMed  Google Scholar 

  217. Barbosa-Sabanero K, et al. Lens and retina regeneration: new perspectives from model organisms. Biochem J. 2012;447(3):321–34.

    Article  CAS  PubMed  Google Scholar 

  218. Yang L, et al. In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc Natl Acad Sci U S A. 2002;99(12):8078–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Xie H, et al. Stepwise reprogramming of B cells into macrophages. Cell. 2004;117(5):663–76.

    Article  CAS  PubMed  Google Scholar 

  220. Kim J, et al. Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A. 2011;108(19):7838–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Ieda M, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142(3):375–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Garza-Garcia AA, Driscoll PC, Brockes JP. Evidence for the local evolution of mechanisms underlying limb regeneration in salamanders. Integr Comp Biol. 2010;50(4):528–35.

    Article  PubMed  Google Scholar 

  223. Grogg MW, et al. BMP inhibition-driven regulation of six-3 underlies induction of newt lens regeneration. Nature. 2005;438(7069):858–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Yakushiji N, et al. Correlation between Shh expression and DNA methylation status of the limb-specific Shh enhancer region during limb regeneration in amphibians. Dev Biol. 2007;312(1):171–82.

    Article  CAS  PubMed  Google Scholar 

  225. Zeng A, et al. Heterochromatin protein 1 promotes self-renewal and triggers regenerative proliferation in adult stem cells. J Cell Biol. 2013;201(3):409–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Gornikiewicz B, et al. Epigenetic basis of regeneration: analysis of genomic DNA methylation profiles in the MRL/MpJ mouse. DNA Res. 2013;20(6):605–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Timchenko NA. Aging and liver regeneration. Trends Endocrinol Metab. 2009;20(4):171–6.

    Article  CAS  PubMed  Google Scholar 

  228. Tedeschi A. Tuning the orchestra: transcriptional pathways controlling axon regeneration. Front Mol Neurosci. 2011;4:60.

    PubMed  Google Scholar 

  229. Puttagunta R, et al. PCAF-dependent epigenetic changes promote axonal regeneration in the central nervous system. Nat Commun. 2014;5:3527.

    Article  PubMed  CAS  Google Scholar 

  230. Mescher AL, Neff AW. Regenerative capacity and the developing immune system. Adv Biochem Eng Biotechnol. 2005;93:39–66.

    CAS  PubMed  Google Scholar 

  231. King MW, Neff AW, Mescher AL. The developing Xenopus limb as a model for studies on the balance between inflammation and regeneration. Anat Rec (Hoboken). 2012;295(10):1552–61.

    Article  CAS  Google Scholar 

  232. Fukazawa T, et al. Suppression of the immune response potentiates tadpole tail regeneration during the refractory period. Development. 2009;136(14):2323–7.

    Article  CAS  PubMed  Google Scholar 

  233. Mescher AL, Neff AW, King MW. Changes in the inflammatory response to injury and its resolution during the loss of regenerative capacity in developing Xenopus limbs. PLoS One. 2013;8(11):e80477.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. Larson BJ, Longaker MT, Lorenz HP. Scarless fetal wound healing: a basic science review. Plast Reconstr Surg. 2010;126(4):1172–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Aurora AB, et al. Macrophages are required for neonatal heart regeneration. J Clin Invest. 2014;124(3):1382–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Epelman S, et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity. 2014;40(1):91–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Molawi K, et al. Progressive replacement of embryo-derived cardiac macrophages with age. J Exp Med. 2014;211(11):2151–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Lavine KJ, et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc Natl Acad Sci U S A. 2014;111(45):16029–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Pajcini KV, Speck NA, Pear WS. Notch signaling in mammalian hematopoietic stem cells. Leukemia. 2011;25(10):1525–32.

    Article  CAS  PubMed  Google Scholar 

  240. Wichterle H, et al. Directed differentiation of embryonic stem cells into motor neurons. Cell. 2002;110(3):385–97.

    Article  CAS  PubMed  Google Scholar 

  241. Kuhn B, et al. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med. 2007;13(8):962–9.

    Article  PubMed  CAS  Google Scholar 

  242. Hou P, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science. 2013;341(6146):651–4.

    Article  CAS  PubMed  Google Scholar 

  243. Li W, et al. Chemical approaches to stem cell biology and therapeutics. Cell Stem Cell. 2013;13(3):270–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Cheng L, et al. Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Res. 2014;24(6):665–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fu, X., Zhao, A., Hu, T. (2018). Dedifferentiation and Organ Regeneration. In: Cellular Dedifferentiation and Regenerative Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56179-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56179-9_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56177-5

  • Online ISBN: 978-3-662-56179-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics